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1 Introduction

Plotting log-mortality against age reveals a large segment of (seemingly) linear increase that

implies a Gompertz risk of dying. Determining the actual range of Gompertz mortality, though,

requires a formal procedure. Using Gompertz goodness-of-fit tests, we can check whether or

not mortality between ages x1 and x2 increases exponentially. Lenart and Missov (2016) adapt

general goodness-of-fit tests like the Anderson-Darling test (Anderson and Darling, 1952), the

correlation coefficient test (Filliben, 1975), and the likelihood ratio test against the truncated

generalized extreme value distribution (Elandt-Johnson, 1976; Wilks, 1938) to the case of the

Gompertz distribution assuming that individual lifetimes are fully observed. Aggregate mor-

tality data in the age interval [x1, x2], though, are subjected to a different observation scheme:

1) individual lifetimes are interval censored (age at death is given in completed years and to

reconstruct the “actual” age at death we need to assume a distribution of deaths within the

interval, e.g. uniform distribution), and 2) individuals that die outside of [x1, x2] should be

addressed accordingly (if we do not consider them in the sample, then we have left and right

truncation). We focus on the Anderson-Darling goodness-of-fit for the Gompertz distribution

and modify the Anderson-Darling statistic (Chernobai et al., 2015: formula 20.17, p.583) so

that it accounts for both left and right truncation.
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Gompertz
Country Year Onset Ending

England & Wales 1900 63 83
England & Wales 2000 76 96

France 1900 63 87
France 2000 75 101
Italy 1900 62 82
Italy 2000 73 98

Japan 1950 65 92
Japan 2000 76 107

Sweden 1900 67 84
Sweden 2000 74 99

Table 1: The age range (columns 3 and 4) of pure Gompertz death-rate increase (determined by applying
a correlation coefficient goodness-of fit test) for England & Wales, France, Italy, Japan, and Sweden in
1900 (1950 for Japan) and 2000.

2 Preliminary Findings

Figures 1 and 2 show the results of applying Anderson-Darling goodness-of-fit test for the

Gompertz distribution in all possible intervals [x1, x2], x1 ∈ [20, 90], x2 ∈ [20, 90], x1 < x2 for

two populations: France 1972 and Italy 1987. Blue circles denote intervals [x1, x2] with Gom-

pertz mortality, while orange circles mark intervals with non-Gompertz risk of dying. For all

four populations the vertical right border of blues areas denotes the endpoint of each interval

with Gompertz mortality, e.g. for France 1972 death rates increase exponentially in the inter-

vals [25, 35], [40, 52], and [59, 72]. The “accident hump” seems to be located between ages 35

and 40, while some excess mortality, perhaps cancer-related, causes deviation from the Gom-

pertz pattern between ages 52 and 59. The estimated slope of the log-Gompertz line in the

aforementioned three intervals is almost identical (0.12, 0.122, and 0.121), which implies that

fitting a Gompertz line with a slope of 0.121 will separate Gompertzian (“senescent”) from

non-Gompertzian (“external”) mortality.

Populations characterized by increasing longevity postpone deaths to later ages. Table

1 reflects this by showing increasing (with time) onset ages of the purely Gompertz part of

mortality (column 3) as well as increasing ages of mortality deceleration (column 4). For

countries with fluctuating life-expectancy patterns, e.g. Eastern European countries in the

1990s, we expect year-to-year fluctuation in extrinsic mortality and stagnation of the age of

mortality deceleration.
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3 Further Steps

This research aims to further study the time trend by country for the three measures of interest

(the onset of aging, the age-ranges of non-Gompertz mortality at young adult and later adult

ages, as well as the age of mortality deceleration). A by-product will be the separation of

age-specific non-Gompertz mortality that can provide insight into the way to adequately model

non-aging related mortality (we know that using a Makeham term is an oversimplified approach

to quantify this). A third goal of this study is to estimate the slope of the Gompertz segments

for each population, i.e. the rate of population aging, and draw inference about the rate of

individual aging in a frailty model setting.

4 Method

Fitting Gompertz distribution with the assumption that death counts are Poisson distributed.

Maximizing the likelihood:

lnL =
∑
x

[D(x) lnµ(x)− E(x)µ(x)] , (1)

Results in parameters a, b for a given (year, sex, country,) start-last age combination for

all starting ages in [0,109] with last ages [(startage+1),110]. This is like a triangular matrix.

Samples are always age transformed to starting age 0.

4.1 Anderson-Darling test

Based on the Anderson-Darling test for left-truncated distributions detailed in Chernobai et al.

(2015). Eq. 20.17 on page 583 the AD statistic with left truncation at H is given by

AD2∗ = −n+ 2n log(1− zH)− 1

n

n∑
j=1

(1 + 2 (n− j)) log (1− zj) +
1

n

n∑
j=1

(1− 2j) log (zj − zH)

Testing

H0 : Fn(x) ∈ F̂ ∗(x)

HA : Fn(x) /∈ F̂ ∗(x)

where:

F̂ ∗(x) :=
F̂θ(x)− F̂θ(H)

1− F̂θ(H)
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zj := F ∗ (x(j)) zH := F ∗ (H)

Therefore zj is the ordered cumulative distribution function transform of the sample values.

With small modification, adding zG for right truncation:

AD = −n+ 2n log(zG − zH)− 1

n

n∑
j=1

(1 + 2 (n− j)) log (zG − zj) +
1

n

n∑
j=1

(1− 2j) log (zj − zH)

In order to calculate AD, we need lifespans. Lifespans are reconstructed between the starting

age and last age 1) first truncating to integer death counts 2) and lifespans uniformly distributed

in a given year.
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Figure 1: Application of the Anderson-Darling goodness-of-fit test for the Gompertz distribution in
all intervals [x1, x2], where x1 ∈ [20, 90] (vertical axis), x2 ∈ [20, 90] (horizontal axis), and x1 < x2 for
France, 1972. Blue circles designate age ranges with Gompertz mortality, while orange circles point at
age ranges with non-Gompertz risk of dying.
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Figure 2: Application of the Anderson-Darling goodness-of-fit test for the Gompertz distribution in
all intervals [x1, x2], where x1 ∈ [20, 90] (vertical axis), x2 ∈ [20, 90] (horizontal axis), and x1 < x2 for
Italy, 1987. Blue circles designate age ranges with Gompertz mortality, while orange circles point at age
ranges with non-Gompertz risk of dying.
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