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Abstract. Infant mortality is one of the most important socioeconomic and health
quality indicators in the world. In Brazil, neonatal mortality accounts to 70% of
the infant mortality. Despite its importance, neonatal mortality shows increasing
signals, which causes concerns about the necessity of efficient and effective meth-
ods able to help reducing it. In this paper a new approach is proposed to classify
newborns that may be susceptible to neonatal mortality by applying supervised
machine learning methods on public health features. The approach is evaluated
in a sample of 15,858 records extracted from SPNeoDeath dataset, which were
created on this paper, from SINASC and SIM databases from São Paulo city
(Brazil) for this paper intent. As a results an average AUC of 0.96 was achieved
in classifying samples as susceptible to death or not with SVM, XGBoost, Logis-
tic Regression and Random Forests machine learning algorithms. Furthermore
the SHAP method was used to understand the features that mostly influenced the
algorithms output.
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1 Introduction

Infant Mortality (IM) is an important measure of health in a population as a crude
indicator of the poverty and socioeconomic level. It also shows the availability and
quality of health services and medical technology in a specific region. Comparisons of
the Infant Mortality Rate (IMR), which is presented as the deaths of children less than
one year old per 1,000 alive births, are used in needs assessments and to evaluate the
influence of public policies. IM is categorized as Neonatal, when the death occurs after
postpartum and until 28 days of life; and as the Post-Neonatal, when the death occurs
from 29 days of life until one year of life.

Neonatal Mortality Rate (NMR) and IMR are therefore very important indexes of
public health and development level of a country. Actions to decrease NMR and IMR
result in the improvement of infant mortality and survival, which can positively in-
fluence the national public situation of health [8]. The neonatal mortality accounts to
approximately 60% of the IM in developing countries [44]. This dimension of IM is im-
portant because, from the point of view of the World Health Organization (WHO) [37]
and United Nations Children’s Fund (UNICEF) [45], the first month of life is the period
in which the child is more vulnerable. In Brazil it’s been observed an increase in the
participation of neonatal mortality in the total of IM cases over more than one decade,
as we can see in Figure 1.

Fig. 1: Participation of Neonatal Mortality in the Infant Mortality - Brazil
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Child Mortality is an worldwide concern in public health as defined by the United
Nation (UN) on the global development goals when setting the reduction of the infant
mortality until 2015 as a target. Brazil achieved this Millennium Development Goal, but
national rates do not reveal the persistent inequalities remaining between geographic re-
gions and population groups. Regions and populations with lower incomes are at greater
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risk of infant deaths. In addition to the disparities arising from socioeconomic and ge-
ographic factors, infants in the first week of life (early neonatal death) did not reduce
satisfactorily and now represent the greatest challenge to the advancement of addressing
infant mortality in the country [42].

The problem of infant mortality in Brazil has become relevant, since the available
data and their respective analyzes point out to the persistence of disparities between
regions, states and populations with different socioeconomic characteristics, despite the
constant tendency of general decline [42]. Besides that, evaluating the data from the
period of 2015 to 2017, it can be observed a reverse behavior of the neonatal mortality in
Brazil, which after more than 20 years of decline, the NMR started to raise, as illustrated
on Figure 2. Moreover, in Brazil, in 2017, we had a NMR of 9 deaths per 1,000 live
births, while in developed countries, the NMR is on average 4 neonatal deaths per 1,000
live births.

Fig. 2: Neonatal Mortality by Macroregion and Total of Brazil.

8

10

12

14

16

2000 2005 2010 2015
Year

N
eo

na
ta

l M
or

ta
lit

y 
R

at
e Region

Brazil

Midwest

North

Northeast

South

Southeast

Source: SIM, SINASC, 2000-2017.

In Brazil, since the enactment of the Federal Constitution of 1988, a large part of the
burden of coping with neonatal mortality has been imposed on municipalities, that have
adopted a prominent position in the implementation of public health policies [22, 3].
São Paulo, the capital city of the state of São Paulo, located in the southeast of Brazil,
has the lowest NMR, which was 7.5 per 1,000 live births in 2017.

The factors associated with neonatal mortality are deeply articulated and influenced
by the maternal and newborn biological characteristics, social conditions and the care
provided by the health services [32, 11]. In 2003, Mosley and Chen [31] proposed a
hierarchical model based on the hypothesis that socioeconomic factors determine be-
haviors, which, in turn, have an impact on a set of biological factors. According to
their model, biological factors are those directly responsible for death. The hierarchical
model brings a great advance to the development of public policies, since information

2



Submitted to the European Population Conference - EPC 2020

coming from studies that are limited to only a group of risk factors result in inadequate
recommendations to assess the deaths among children, as they present a limited vision
of the phenomenon.

Similarly, on this paper it is proposed the use of this kind of features but along with
machine learning supervised methods to asses neonatal death risk, as well as to identify
the features that mostly influence it. On this sense, the base of our scientific hypothe-
ses is: different characteristics of the mother and the newborn as maternal obstet-
rics, related to the newborn and to the care assistance on prenatal and delivery are
able to predict neonatal mortality more than only socioeconomic characteristics of
the mother.

1.1 Machine Learning Applied to Demographic Research

Most of the demographic studies in Brazil search for specific factors related to in-
fant and neonatal mortality, based on the use of descriptive analysis like spatial ana-
lyzes, multiple statistical and logistic parametric regression and, in general, using small
datasets.

Nascimento et. al. [32] proposed an hierarchical model to analyse a dataset with 264
neonatal deaths while Migoto et. al. [29] uses a dataset containing 157,604 live births
and 903 early neonatal deaths (up to the sixth day of life). Both works found some
strongly related factors to total neonatal mortality and early neonatal mortality. It was
observed that neonatal deaths were related mainly to the quality of the prenatal care
and direct care labor. These features were measured through some variables such as:
number of prenatal consultations, type of labor, professional responsible for the child-
birth (doctor on call, obstetrician, nurse or other).In addition, some associations were
found regarding the reproductive history of the mother, such as if the mother presented
fetal losses in previous pregnancies. They also identify some relation with presence of
malformation and to maternal socioeconomic conditions (mother’s education, marital
status and mother’s race).

Migoto et. al. [29] also points that maternal age indicates a higher chance of early
neonatal death among adolescent mothers and those who were 35 or older when com-
pared to mothers who were 20 to 34 years old. Regarding the education, the mothers
of children who died before completing one week of life studied until they were seven.
Moreover, the children of women who had no partner were more likely to die when
compared to women who were married.

While aforementioned works relay on traditional statistics methods, machine learn-
ing (ML) approaches start to be highlighted among some international works. Nguyen [33]
proposes to use machine learning approaches to analyze in-hospital child mortality us-
ing as features the final diagnosis, for example, children with meningitis or malnutrition
diagnosis were most likely to die. This work had the concern to make models that were
capable of detecting the death in the sample since the outcome was a rare event.

Pan [38] observed that ML models were capable of identifying more then 150 high
risk pregnant women besides the paper-based risk assessment already used in the social
services in Illinois. So, the ML methods were capable of improving the efficiency of
decision making and improvements in the identification of high-risk pregnancy eligible
to receiving specific health services.
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The ML approach proposed by Podda et. al. [40] aimed at estimating the survival
of newborns prematurely and compared machine learning models with the most com-
mon logistic methods in these types of analyzes. Author’s methods predict the survival
of preterm neonates better than logistic models and, thus, allow a better approach for
identifying risks and allowing the improvement of decision quality and identification
of risks. They used Neural Networks and observed that although logistic regression
models and other linear models are more easily understood and interpretative and their
results are easily used as risk measures, this ease of interpretation is lost when inter-
actions between variables are present, and in this case, neural networks can take into
account interaction between variables and non-linearities with the variable outcome.

Hsieh et. al. [16] proposed a comparison of ML models with the aim to predict
the mortality of patients with unplanned extubation in intensive care units. They ob-
served that even with limited data points (341), they were able to develop a good pre-
diction model. This authors worked with an unbalanced data, with the Random Forest
model presenting best recall and precision values compared to the others models used
in that work (Support Vector Machine, Artificial Neural Networks, Logistic Regression
Model).

According to the best of our knowledge, there are no studies in Brazil analyzing the
risk of neonatal mortality with machine learning methods. Furthermore, there are no
reported results for this kind of problem using as input features from Mortality Infor-
mation System (Sistema de Informação de Mortalidade - SIM) and the National Infor-
mation System on Live Births (Sistema de Informação de Nascidos Vivos - SINASC).

The main contributions of this work are: (1) proposition of a new method,
modeled as a classification problem, based on ML approaches, to detect neona-
tal death; (2) a comparative study to assess efficacy of different types of machine
learning classifiers; (3) an analysis of important features to improve problem un-
derstanding.

The rest of this work is divided as following: Section 2 presents details of the
methodology including classification algorithms description and experiments protocol
defined for this paper, as well as the dataset construction process and respective ex-
ploratory analysis. Section 3 brings details of performed experiments and respective
results, including results of the feature importance method. Finally in Section 4 it is
presented a discussion of the experiments results, the main conclusions and perspec-
tives for future works.

2 Methodology

The methodology proposed on this paper 1, depicts on Figure 3, follows three main
steps:

1. Labeling Process: consists in performing a joined analyzes between samples from
SINASC and SIM datasets; creating the target variables; and removing records hav-
ing any kind of data inconsistency;

1 In order to allow the reproducibility the of proposed method, along with the comparison with
another techniques, source code will be made public on GitHub under paper acceptance.
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2. Data Preprocessing: in this third step common techniques were applied in order
to prepare the dataset to be used with selected ML methods: (i) fill missing values;
(ii) transform all features in categorical; and (iii) transform the data set by using the
One Hot Encoding technique;

3. Supervised Learning: finally, in the last step, four ML methods were experimented
Support Vector Machines, Logistic Regression, Extreme Gradient Boosting, and
Random Forests. Additionally to evaluating the features that mostly influence algo-
rithm results, the Shapley Additive Explanation method was applied. A brief intro-
duction of all these methods is presented in the next section.
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Fig. 3: Overview of the methodology followed on this paper.

2.1 Labeling Process

Data used in this study was extracted from birth and death records in the City of São
Paulo between 2012 and 2018. Also, we just keep death records from neonatal period
(when the child died before the first 28 days of life). The municipality of São Paulo is
the one with better data quality and the data was collected directly from the Municipal
Health Office of São Paulo (SMS - Secretaria Municipal de Saúde de São Paulo).

Although São Paulo has the best quality and best levels of neonatal rate when com-
pared to the rest of Brazil, as depicted in Figure 4, these events occurred in heteroge-
neous ways with smaller or even lower reductions in the most vulnerable populations,
as the reflection of unfavorable life conditions of the population, health care and socioe-
conomic inequalities [12].

2.1.1 SINASC and SIM Data Sources

The data used on this paper was extracted from SINASC and SIM, that are the
two main sources of information on births and deaths in Brazil respectively. SINASC
is fed based on the Live Birth Statement (Declaração de Nascido Vivo - DNV) [36],
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Fig. 4: Comparison of Neonatal Mortality by São Paulo and Total of Brazil: 2000 to
2017.

8

10

12

2000 2005 2010 2015

Year

N
eo

na
ta

l M
or

ta
lit

y 
R

at
e

Region

Brazil

Sao Paulo

Source: SIM, SINASC, 2000-2017.

and was used to retrieve demographic and epidemiological data on the infant, mother,
prenatal care and childbirth. SIM has the main goal of supporting the collection, storage
and management process of death records, in Brazil [30], and was used to label death
records on SINASC, using DNV as an association key.

DNV is a standard document prepared by the Ministry of Health (Ministério da
Saúde - MS) and mandatory throughout the national territory for the registration of a
child’s birth. It must be filled in all live births, whatever the circumstances of the birth:
hospitals, maternity, emergency, household, public roads, vehicles, etc. Similarly, we
have the Death Certificate (Declaração de Óbito - DO) that is the document used to
collect information about mortality and it is used as the basis for the calculation of vital
statistics, such as the calculation of the Brazilian neonatal mortality rate.

Even though filling out the DNV and the DO is mandatory, there is a significant
deficiency in data quality due to many situations as losses when sending them from
hospitals to the city health office’s (which is responsible to report to the MS); fields
filled with incorrect values; unknowing information by the person answering, etc.

SINASC and SIM data sets are not initially linked, so to associate birth and death
records, a simple union between the datasets was performed by using the DNV field,
which is present inn both datasets, as mentioned before. This approach was based on
previous papers such as [24, 43].

After the union, a new field was added in the resultant data set, to label the samples
as being a neonatal death (deaths occurred before the first 28 days of life) or not. This
was achieved by calculating the difference between the birth date (from SINASC) and
the death date (from SIM). As in the proposed method the SIM data is used just to allow
data set labeling, after this process all SIM fields were removed from the final dataset.

Finally, rows having fields with inconsistent values were removed, and as a result
we got a dataset containing 1,435,834 million records, with 24 features (and the target
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variable) referred on this paper as SPNeoDeath dataset. The features are described on
Table 1.

Table 1: Dictionary of data - variables used in the models
Variable Descriptive
n tp ocorrencia Birth place
n tp estado civil Marital status
n tp gestacao Gestational weeks
n tp gravidez Type of pregnancy
n tp parto Labor type
n tp prenatal Number of prenatal appointments
n st malformacao Congenital malformations
n tp escolaridade 2010 Maternal education
n tp raca cor mae Maternal race/skin color
n tp apresentacao Type of presentation of the newborn
n tp nascimento assistido Childbirth care
n tp funcao responsavel Main worker role
n tp grupo robson Robson 10-groups classification
n tp escolaridade agregado1 Maternal education
n tp escolaridade agregado2 Maternal education
n ct peso Newborn weight
n ct idade Maternal age
n ct nascidos vivos Number of live births
n ct nascidos mortos Fetal losses
n ct gestacao anterior Number of previous gestation
n ct parto normal Number of normal labor
n ct parto cesarea Number of cesarean labor
n ct apgar1 Apgar at the first minute
n ct apgar5 Apgar at the fifth minute

2.1.2 SPNeoDeath: Dataset Description and Exploratory Analysis

From the problem perspective (neonatal mortality) it is important to highlight some
specificities regarding possible values for features in the dataset. In order to better un-
derstand the problem and the SPNeoDeath dataset itself, in this section we provide
some descriptions of the dataset as well as the results of an exploratory analysis.

The exploratory analysis presents the values of the features acordding to its distri-
bution (%) of demographic, socioeconomic, maternal obstetrics, related to newborn and
previous care characteristics in São Paulo from 2012 to 2018. Information is presented
in the categories: (a) socioeconomic maternal conditions features; (b) maternal obstet-
rics features; (c) newborn related features; and (d) previous care related features. Fur-
thermore, some statistics regarding the features values distribution among target classes
are also presented (deaths/lives).
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1. Socioeconomic maternal conditions features: age, education, marital status and
skin color. Most of the mothers were between 15 and 34 years old, but the age was
predominantly 25 to 29 years old (24%); 54% were either married or in a stable
relationship; 56% of the mothers had had 4 to 7 years of education; and 57% were
white. The complete values distribution is on Figure 5.

Fig. 5: Socioeconomic Maternal conditions

(a) Mother’s Age (b) Marital Status

(c) Education (d) Race/skin color

Source: SIM, SINASC, 2000-2017.

2. Maternal obstetrics features: number of live births, fetal losses, number of pre-
vious pregnancies, number of normal and cesarean labor, estimate type and type of
pregnancy. Most of the mothers had 0 to 3 children (98%); about 99%, 97%, 99%,
and 99% had 0 to 3 fetal losses, previous pregnancies, normal labor and cesarean
labor, respectively; approximately 97% had a single pregnancy and 87% had 37 to
41 gestational weeks. The complete values distribution is on Figure 6.

3. Features related to the newborn: weight, number of pregnancy weeks, apgar in-
dex first minute, apgar index fifth minute, congenital anomaly and type of presen-
tation of the newborn. Regarding the newborn features, 61% was born weighing
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Fig. 6: Maternal Obstetrics/Previous care

(a) Number of live births (b) Fetal losses
(c) Number of previous gesta-
tion

(d) Number of normal labor (e) Number of cesarean labor (f) Type of pregnancy

Source: SIM, SINASC, 2000-2017.

between 3,000 and 3,999 grams and 24% between 2,500 and 2,999 grams. Most of
the newborns scored 8 to 10 on Apgar in the 1st and 5th minutes (65% and 93%,
respectively). The complete values distribution is on Figure 7.

4. Features related to previous care: number of prenatal consultations, labor type,
if the cesarean section occurred before labor began, if the labor was induced in the
Robson 10-groups classification. Finally, most mother’s have been to more than 7
prenatal appointments (78%); 56% had cesarean labor; 81% had childbirth care for
the doctor; and 34% were in Robson Classification Group 2. The complete values
distribution is on Figure 8.

2.1.3 Features Values Distribution Among Target Classes

Sex, age and prenatal consultations: from all neonatal death data 55% was male
and 45% was female. The average age of the survivors was about 9 days. Related to the
number of prenatal consultations, 38% went to 4 to 6 consultations, 36.5% went more
than 7 times and almost 20% went only 1 to 3 times. Observing only those newborn who
survived (7,928 samples), we have 78.39% of mothers went to more than 7 consultations
and only 1% of those mothers didn’t go to any one, as depicted in Figure 9.
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Fig. 7: Related to Newborn Characteristics

(a) Newborn weight (b) Gestational weeks (c) Apgar at 1st minute

(d) Apgar at 5th minute (e) Congenital malformations
(f) Type of presentation of the
newborn

Source: SIM, SINASC, 2000-2017.

Birth weigth, apgar index and gestational weeks: when analyzing birth weight,
which frequency is depicted at Figure 10, 78.75% of newborns who died before the
28th day of life (death class) had insufficient weight - below 2,500 grams, whereas in
the alive class only 9.32% were underweight and 91% were born with weight greater
than 2,500 grams.

The apgar index (apgar1 and apgar5) are tests done on the newborn just after birth
in the 1st minute and then on the 5th minute which assess his general condition and
vitality. Related to apgar1, we can observe on Figure 11, in death class, that more than
78% of the newborns in the death class had an index considered serious or moderately
severe. In contrast, 63% of the newborns who did not die had an optimal assessment in
the first minute of life. Furthermore, Figure 12 depicts results for apgar5, exposing that
51% of the death class had a severe or moderately severe evaluation, while 94.1% of
the alive class had an optimal evaluation.

Regarding gestational weeks, we can see in Figure 13 considering the death class,
that 76.41 % were born preterm, that is, before the thirty-sixth week of gestation. In the
alive class, 88.21% were born in the range of 37 to 41 weeks of gestation.
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Fig. 8: Related to previous care

(a) Number of prenatal appointments (b) Labor type

(c) Childbirth care (d) Robson 10-groups classification

Source: SIM, SINASC, 2000-2017.

2.2 Preprocessing

In a way to achieve best performance in chosen ML classifiers, some common data
preprocessing techniques were applied on SPNeoDataset: (i) missing values treatment;
(ii) synthetic categorical transformation; and (iii) One Hot Encoding.

2.2.1 Missing Data Processing

In the context of Brazilian public health data, occurrence of missing or inconsistent
data is usual and it mostly happens due to the incorrect filling of handwritten forms. In
order to take care of this problem, a general approach for demographic studies, based
on approaches used in other studies was applied. [34, 25]. Basically, two different tech-
niques were applied: for non-categorical features, with continuous numerical values,
the main value for this feature in the dataset is calculated, and the feature is filled with
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Fig. 9: Comparison of Prenatal consultation between death and alive target variable
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Fig. 10: Comparison of birth weight between death and alive classes.
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Fig. 11: Comparison of Apgar Index at 1st minute between death and alive classes.
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this value; whereas features with categorical values (discrete values) are filled using the
most frequent value for this feature in the dataset.
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Fig. 12: Comparison of Apgar Index at 5th minute between death and alive classes.

Source: SIM, SINASC, 2000-2017.

Fig. 13: Comparison of Gestational Weeks death and alive classes.

Source: SIM, SINASC, 2000-2017.

2.2.2 Synthetic Categorical Transformation

Features in the SPNeoDeath dataset are mostly categorical, however, some of them
are in continuous domain. The proposed method creates the concept of synthetic cate-
gorical feature, which encodes the feature value from a continuous numeric domain into
a specific discrete value, values which were defined for this paper, and have meaning for
the neonatal death risk classification problem. The features were encoded as following:

– n ct peso: grouped in four groups as defined by WHO [39]: Low Weight (less than
2500 gr); Insufficient Weight (2500 to 2999 gr); Adequate Weight (3000 to 3999
gr) and Weight Excess (4000 gr or more).

– n ct idade: grouped in 9 groups starting with the lowest ages present in the records
(8 to 14 years old) and ending at 50 years or older, always creating groups of five-
years as determined by different literature methods based on maternal age [19, 23,
35].
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– n ct nascidos vivos: the number of children born alive related with mother’s re-
productive history was divided in 4 groups starting with the group of 0 to 3 live
births, 4 to 7, 8 to 10 and 11 or more.

– n ct nascidos mortos: the number of children born dead related to the mother’s
reproductive history was divided in 4 groups starting with the group of 0 to 3 live
births, 4 to 7, 8 to 10 and 11 or more.

– n ct apgar1: this feature is a score in the range from number 0 to number 10 (just
using integer numbers) [1]. It has been grouped in 4 groups: 0 to 3 (severe); 4 to 6
(moderate); 7 (light); 8-10 (optimum) [26, 14].

– n ct apgar5: this feature follows the same shape as the grouping done by n ct apgar1.
– n ct parto normal: the number of each woman’s normal deliveries was grouped

in 5 groups: 0 to 3 deliveries; 4 to 7; 8 to 10; 11 to 14; 15 or more pregnancies.
– n ct parto cesarea: the number of cesarean sections follows the same grouping

configuration as the variable n ct parto normal.
– n ct gestacao anterior: the number of each woman’s previous pregnancies was

grouped in 5 groups: 0 to 3 pregnancies; 4 to 7; 8 to 10; 11 to 14; 15 or more
pregnancies.

2.2.3 One Hot Encode

Adoption of discrete values for categorical columns may pose a problem in the con-
text of ML algorithms, since these values may be misinterpreted in an ordinal manner,
showing an hierarchy between the values of that given category. In order to solve this
problem, we convert our features into dummy variables using a technique commonly
referred as One-hot Encoding [4], which generated a vector of N positions for each
existent category, where N is measured by the amount of unique values of a specific
category. Then, one of the columns of the vector is filled with the value of 1 (one), in-
dicating the presence of that given category, where the other positions are filled with 0
(zero).

2.3 Supervised Learning Methods

At this section, we present ML algorithms which where selected for the problem showed
on this paper. The algorithms choice for this paper come from good results achieved in
health problems [40, 16, 38, 33, 17].

2.3.1 Support Vector Machines [9]

Support Vector Machine (SVM), is one of the most common methods applied on
supervised classification problems mainly because of its excellent accuracy and gener-
alization properties [40, 16]. The basic concept behind SVM is on the discovery of an
hyper-plane that can separated the data into the number of the classes, projecting data
in a M dimensional space by kernel application.
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2.3.2 Logistic Regression [15]
Adopting a logistic function to find a model that better fits the data points, the logis-
tic regression model is used to estimate the probability of a binary event happening
based on some previously input data. Once our work is based on a binary classification
problem, and due to the simplicity of this method, we choose this algorithm, as also
employed previously in other related works [16, 38].

2.3.3 XGBoost [7]
Adoption of gradient boosting machines has been proved to push the limits of process-
ing power for boosted trees algorithms. These techniques have been refined to extract
most of the system hardware in order to provide a high quality model. A variant of this
model was use in the work of Podda et. al. [40], the Gradient Boosting Machine (GBM),
and presented a good performance on predicting preterm infant survivor.

2.3.4 Random Forests [6]
Three-based algorithms, provide an easy comprehension of their outcomes, as well as
the interaction between features used on classification. Adoption of random forests rely
on the fact that this approach makes usage of multiple trees with a random subset of
features for training and testing, thus leading to a higher diversity and more robust
predictions. This model has a good performance in different literature approaches [38,
33, 40], including prediction in different contexts of infant mortality outcomes using
different features related with the child and the mother.

2.4 Evaluation Metrics

In order to assess the quality of our method, as well as to provide a baseline for future
works, and given we are working in a binary classification problem where weights for
missing answers are different for classes 2, classic metrics [5] to analyze the ML models
results. Also, the following metrics are the common adoption in other papers that are
related to public health analysis using ML methods [41].

Besides that, and as an innovation on studies similar to the proposed here, a method
to evaluated the features that are mostly influencing the models results has also been
applied to the ML model that achieves the better performance on each round of ex-
periments (detailed in next sections). This approach provides a better interpretation of
results and on this paper the SHapley Additive exPlanation (SHAP) Values [21] method
has been used.

2.4.1 Confusion Matrix, ROC Curve and AUC

Confusion Matrix presents a relation between true positives (TP) (death samples
correctly classified as death), true negatives (TN) (alive samples correctly classified as

2 For this paper, a FN answer, when a death sample is classified as alive, it is much more prob-
lematic than a FP, when an alive sample is classified as death.
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alive), false positives (FP) (alive samples misclassified as death), and false negatives
(FN) (death samples misclassified as alive).

ROC Curve - Receiver Operating Characteristic Curve - and the AUC - Area Un-
der the ROC Curve - has been extensively used as measures for machine learning al-
gorithms because it allows the comparison between the classifiers’ performance across
the entire range of class distributions and error costs [20].

The ROC Curve is a coordinate system representation that allows to measure the
behavior of a binary classifier system as its discrimination threshold is varied. In the
y-axis is plotted the True Positive Rate (TPR) values, or sensitivity; and in the x-axis is
plotted the False Positive Rate (FPR) values, or specificity. Sensitivity and specificity
are calculated as presented on Equations 1 and 2 respectively.

The AUC value represents the integral under ROC Curve, and for the convention
the bigger its value, the better the model is evluated.

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

2.4.2 Feature Importance Evaluation with SHAP

Interpretability of machine learning models are a concern across different fields in
computer science and applied sciences. For public health and demography this kind of
characteristic is specially important. An expert which holds its recommendation using
as help a machine learning model, needs to explain and justify the presented conclu-
sions. In this sense, besides the results of the proposed method execution, on this paper
it was also applied the SHAP method, to measure features importance and provide a
better interpretation of results.

SHAP method belongs to “additive feature attribution methods” which can be sim-
plified by linear function of features. This method tries to come up with a linear regres-
sion model for each data point. It replaces each feature (xi) with a binary variable (z′i)
that represents whether xi its present or not in the model given by:

g(z′) = φ0 +

M∑
i=1

φiz
′
i = bias+

∑
contribution of each feature (3)

where g(z′) is a local surrogate model of the original linear model f(x) and φi is how
much the presence of the feature i contributes to the final output, which helps to inter-
pret the original model.

Formally, a SHAP value measures the influence of a feature i to the output fx pro-
duced by a machine learning model by including the feature i for all the combinations
of features other than i defined by:

φi =
∑

S⊆N\{i}

|S|! (M − |S| − 1)!

M !
[fx (S ∪ {i})− fx (S)] (4)
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where S is the subset of features from all featuresN except for feature i, |S|!(M−|S|−1)!M !
is the weighting factor counting the number of permutations of the subset S, fx (S ∪ {i})
is the actual output model given all features N (including i) and fx (S) is the expected
output given the features subset S.

In general, the importance is calculated from the reduction of the square error, that
is, if this feature was selected in a mode division, in the tree build, and the square error
decreased in relation to all the trees. In this paper, the feature importance was calculated
by using a Python pre-built library H2O [13].

2.5 Experiment Protocols

As already mentioned, since our data contains a substantial imbalance between the
classes (neonatal death or alive), models were trained as a priority on balanced data,
based on the selection of the same number of records for both classes, resulting in
a final dataset with the same amount of records for each class (SPNeoDeath). It was
selected a total of 15,858 records, being half of these linked to neonatal death, and
the others randomly selected from the subset of non neonatal death records. This ap-
proach was chosen due to the fact that most of ML models are better suited for balanced
datasets. For benchamark purpose, the same protocols were also performed once using
the imbalance dataset, with all 1.4 mi records.

The proposed method was performed in four rounds of experiments. Each round
refers to a specific dataset selection and filter approach, but the same four ML models
chosen for this paper were tested (SVM, Logistic Regression, XGBoost and Random
Forests). At the end of each round, the SHAP method was applied for the ML model
showing the best performance (XGBoost achieved the best in all of them, so basically
SHAP was applied only to XGBoost).

The experiments were defined according to the subset of features used on that round.
As mentioned before, four rounds of experiments were defined, in order to evaluated the
influence of having or not a subset of features. The first round was performed using all
records and all features, referred here as imbalance dataset. The second round was per-
formed using all features, but now with the balanced dataset (same number of records
for each class, i.e., 7.929 records for the death class, and the same number for alive).
The third round was also performed on the balanced dataset, but using only prepartum
related features. Finally, in the last round, the experiment was executed on a balanced
dataset using only postpartum features.

Regarding the dataset split for training and test tasks when applying ML models
(number of folds), for all rounds of experiments, same validation protocols were fol-
lowed: a 5-folds cross-validation protocol (when the dataset was split into 5 subsets or
folds), using 4 folds for training the models, and 1 fold for testing, changing test fold
on each interation. This approach is also extensively used on ML models applications.
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3 Experiments and Results

3.1 Environment Setup

The proposed method has been implemented with the Python programming language
(3.6), along with the Scikit-Learn (0.21.2), H2O (3.24.0.4), XGBoost (0.90), Pandas
(0.24.2) and MatplotLib (3.1) libraries. All the experiments have been performed in a
machine with 40 CPU cores, 4 GPU TitanX 12 GB, 120 GB of RAM and 8 TB of
storage, running Ubuntu 18.04 (64 bits).

3.2 ML Hyperparameters Setup

The experiments were performed using mostly the default parameters of the ML mod-
els, and just a few customizations: when using SVM, proposed method takes an RBF

kernel, along with a C value of 1.0 and γ argument as
1

nfeatures
, where n features

is the number of used features; when using Random Forest, the number of estimators
were set to 100 and the criterion argument as gini; XGBoost have been executed using
gbtree booster with a learning rate of 0.3, a γ of 0, amax depth of 6, and other param-
eters as default; and Logistic Regression experiments used an L2 penalty, a tolerance
of 0.0001 and a C parameter of 1.0.

3.3 Results

3.3.1 Round #1: Imbalanced dataset - All features

For this experiment we evaluated the classification performances about imbalanced
dataset composed by all features (prepartum and postpartum features).

The confusion matrix in Figure 14 shows that none of the classification algorithms
present a good performance to classify both classes. All classifiers have a good per-
formance to hit samples labeled as alive class. It happens because the dataset is too
imbalanced.

Figure 15 depicts associated ROC curves and AUC values for each evaluated clas-
sifier. Logistic Regression and XGBoost classification algorithms present a statistical
advantage when compared to SVM and RF. Their ROC curves overlap with AUCs val-
ues as 0.967 for Logistic Regression and 0.968 for XGBoost.

Appling SHAP to explain model output, on this round the top five most relevant
features that influence the results are (on this order): apgar at the 1st minute, newborn
weight, congenital malformations, apgar at the 5th minute and gestational weeks. The
complete feature importance ranking is presented in Figure 16.

3.3.2 Round #2: Balanced dataset - All features

On this round, the experiment was performed on a balanced dataset composed by all
features (next round will be executed with prepartum features only and then with post-
partum features only). The performances classification is presented in the Figures 17
and 18.
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Fig. 14: Confusion matrix for imbalanced dataset with prepartum and postpartum fea-
tures.
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Fig. 15: ROC curve for imbalanced dataset with prepartum and postpartum features.
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Fig. 16: Feature importance for imbalanced dataset with prepartum and postpartum fea-
tures.

From the confusion matrix (Figure 17), we can realize that all classifiers present a
good performance to classify both classes. Besides that, the SVM classifier presents a
slightly better performance to classify death samples as death (TP), but it does not have
a good performance for the alive class.

Analyzing the ROC curve for this scenario, we can observe in Figure 18 that none
of the classification algorithms present a statistical advantage when compared among
themselves and their AUC values that are around 0.96.

Being able to interpret model output gives a direction of feature engineering, and
in this experiment, newborn weight is the feature that most influences the model, fol-
lowed by congenital malformations, apgar at the 5th minute, apgar at the 1st minute
and gestational weeks respectively. Complete feature importance ranking is presented
on Figure 19.

3.3.3 Round #3: Balanced dataset - Postpartum features

Round #3 was performed to evaluate the classification performance in a balanced
dataset with only postpartum features. Results for this experiment are shown in Fig-
ures 20 and 21.
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Fig. 17: Confusion matrix for balanced dataset with all features.
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Fig. 18: ROC curve for balanced dataset with all features.
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Fig. 19: Feature importance for balanced dataset with all features.

ROC curves and AUC values are very similar to the results present in round #2,
where all features were used. So we can conclude that classifiers achieve good predic-
tive performance using only postpartum features. To understand that, Figure 22 shows
the importance for each feature performed by using SHAP method. Top five features
that impact on model output are: newborn weight, congenital malformations, apgar at
the 5th minute, gestational weeks and apgar at the 1st minute.

3.3.4 Round #4: Balanced dataset - Prepartum features

Finally, the last experiment evaluates the performance of the classifiers on imbal-
anced dataset with prepartum features only.

The confusion matrix in Figure 23 shows that all classification algorithms present
TP percentage higher than 80% and TN around 80%, except the Random Forest algo-
rithm that presented a lower performance. Regarding the ROC curve and AUC values,
Logistic Regression and XGBoost algorithms have better predictive performance con-
sidering the AUC value, 0.871 and 0.872, respectively, as depicted in Figure 24).

Analysing the importance of each prepartum feature on classification models, Fig-
ure 25 shows that the number of prenatal appointments and Robson 10-groups predic-
tive features are much more relevant than the others.
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Fig. 20: Confusion matrix for balanced dataset with postpartum features only.
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Fig. 21: ROC curve for balanced dataset with postpartum features only.
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Fig. 22: Feature importance for balanced dataset with postpartum features only.
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Fig. 23: Confusion matrix for balanced dataset with prepartum features.

4 Conclusion and Discussion

This paper presented a methodology to adopt ML algorithms in the task of classify-
ing neonatal mortality using demographic and social-economic features. From public
data collected from the Brazilian government, we created a new dataset (SPNeoDeath),
comprising more than 1.4mi samples for the problem of neonatal mortality.

Approximately one-quarter (28%) of all children worldwide are born with low birth
weight [18] and roughly 60 a 80% of all neonatal deaths are associated with this fac-
tor [32]. Low birth weight infants are more vulnerable to pulmonary immaturity prob-
lems and metabolic disorders, which may cause or aggravate some events that affect
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Fig. 24: ROC curve for balanced dataset with prepartum features.
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Fig. 25: Feature importance for balanced dataset with prepartum features.

them, increasing the risk for mortality. Therefore, low weight and poor ratings in Apgar
1 and 5 are warnings for possible future complications in the child, creating an alert on
the risk of this newborn dying in the first days of life. Furthermore, the study of Nasci-
mento et al. [32], identified a greater neonatal mortality among premature and low birth
weight. Low birth weight is considered a marker of social risk related to precarious
socioeconomic conditions and maternal behavior in relation to health care [32].
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Features distribution on alive/death samples had been performed, obtaining results
which lead us to conclude the high influence on death of the features: number of pre-
natal appointments, birth weight, apgar indexes and gestational weeks. When apply-
ing the feature importance method SHAP, the same features were pointed as being the
top 5 influencers of the ML models results. All these results corroborate with Nasci-
mento et. al. [32] and Migoto et. al. [29]. Both low weight and poor ratings in apgar 1
and 5 are warnings for possible future complications in the child, creating an alert on
the risk of this newborn dying in the first days of life.

The study of Nascimento et al. [32], identified a greater chance of neonatal mortality
among premature, low birth weight and apgar in the 5th minute smaller than 7 (Moder-
ate Score). Low birth weight is considered a marker of social risk related to precarious
socioeconomic conditions and maternal behavior in relation to health care [32].

Although the marital status of women is associated with the risk of neonatal mortal-
ity, it should be noted that this situation is influenced by the socioeconomic conditions
of the region, which impact on the peculiarities of care and morbidity and mortality, to
be considered by public health policies [29]. In experiment round #4 this feature figures
as the 4th most influencing one in the model.

The descriptive analysis performed in Section 2.1.3 shows that newborns who did
not die within the first 28 days of life, 90% were born with weight greater than 2,500
grams. On the other hand, 79% of the neonates who died before the twenty-eighth day
of life had insufficient weight - below 2,500 grams showing this association with the
target feature as demonstrated in the Figure 10.

Another relevant find is that the feature prenatal consultations is among the top
features influencing the models as well as gestational week, as expected. The guarantee
of quality and properly conducted prenatal care can detect early maternal and fetal
diseases, which may reduce the incidence of premature labor in these cases and the
occurrence of low birth weight, a feature highly associated with the outcome of neonatal
mortality in the first month of life. As presented in the Figure 9, 78% of the mothers
of newborns who do not die within the first 28 days of life, undergo 7 or more prenatal
consultations.

There is a vast literature that discusses and relates maternal age to neonatal mor-
tality, such as Nascimento et al [32], França and Lansky [11] and Aquino et al. [2].
Age extremes of the mother (less than 19 years old, especially below 15 years old and
age above 35 years old) have traditionally been related to the increased risk of neona-
tal mortality due to its association with prematurity and low birth weight. This relation
between maternal age and neonatal death has been explained through biological, so-
cioeconomic and behavioral factors. In the case of younger women, their biological
immaturity would lead to a greater frequency of health problems, premature birth and
low weight at birth [2]. In contradiction to this, maternal age did not appeared as one
of the most influencing features in model results, being ”less” important than maternal
color, maternal education and marital status.

Robson 10-groups is a measure of cesarean rate assessment and monitoring. This
classification distributes women into 10 groups based on five characteristics: early la-
bor (spontaneous, induced or cesarean), gestational age, fetal presentation, number of
fetuses and parity (nulliparous, multiparous with and without previous cesarean section)
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[27]. The classification is done in the sense of trying to identify and reduce the cesarean
rate [27]. It is a characteristic that condenses several measures and models classified as
an important feature for the prediction of neonatal mortality.

At rounds #2 and #3 the feature congenital malformations appears as the 2nd most
influencing feature in the model results. Newborns who presented some form of mal-
formation, whom presented higher gestational weeks have higher risk of mortality.
Congenital anomalies are commonly observed in post term pregnancy, that is, a pro-
longation of pregnancy beyond term [10]. Higher gestational weeks increase risks of
abnormal fetal growth and neonatal death, and this association may be related to the
fact that post term fetus may outperform the ability of the placenta to supply nutrients
and it’s a risk resulting in malnutrition or asphyxia. Likewise, malformation could be
caused by genetic and environmental factors (e. g. use of alcohol and tobacco during the
pregnancy) [28]. This information is relevant, because some congenital genetic, infec-
tious, or environmental-related anomalies can be prevented through the implementation
of public policies and an adequate offer of health services.

Finally, the proposed method is able to deal with missing data, continuous and cate-
gorical features, and in the end, classify a new sample according to its chances of dying
in the first 28 days of life.

With results exceeding 95% AUC when using XGBoost as a final classifier, the
method is able to provide both a death risk response and an interpretation of the re-
sult obtained through the use of SHAP values. Between the results across 4 rounds
of experiments using 4 different machine learning classifiers with their default pa-
rameters, the results point toward expressiveness of features, being feature n ct peso,
n st malformacao, n ct apgar5, n ct apgar1, and n tp gestacao respectively the five more
expressive as indicated by a specific analysis using SHAP values.

As a decision support tool, this kind of method can be used to help health experts
to take decisions if a more intensive care is necessary for newborns. Additionally, from
a demographic point of view, studies based on data analysis are valuable to corrobo-
rate important statements, once most of the studies are performed in small populations
without an expressive statistical sample.

For future research directions, our research group intend to evaluate new methods
for dealing with data encoding, such as categorical embeddings, as well as combinations
between different classifiers in order to increase positive class (death) accuracy, for the
occurrence of false negatives that is a very problematic issue on methods related with
health.

Taking advantage of many state-of-the-art algorithms, our method reaches expres-
sive results. Attained results are not only related to accuracy, but with other metrics
applied on health problems as ROC curves and AUC, showing effectiveness and effi-
ciency of the proposed method to classify samples according to the risk of death or not.
Features used as model input reflect the socioeconomic characteristics of the mother,
reproductive history, prenatal care and related characteristics presented by the newborn
at birth.

To the best of our knowledge, no other previous works have been proposed with the
usage of this dataset along with machine learning algorithms, making it the first of it’s
kind in Brazil. Our hypothesis was that neonatal mortality is a complex phenomenon,
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involving interactions of several characteristics and requiring a large volume of data
for its full understanding. In this sense, we believe that traditional regression models
may not be sufficient to understand this problem, since the assumptions of parametric
modeling are unrealistic for investigations of this nature.
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