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Abstract

The probability of death between birth and age five, q(5), is arguably the most
important public health indicator in the world’s poorest countries. Many countries
in which it is critical to measure child mortality lack good vital registration systems,
however, and direct estimation of q5 is impossible without age-specific population and
death data. In such situations demographers use survey data, such as DHS surveys,
and indirect methods. I introduce and test a new, probabilistic approach to the classic
Brass problem of indirect estimation of q5 from aggregate data on children ever born
and children dead by age of women. Bayesian models exploit the same regularities
as classic Brass methods, but without restrictive assumptions about demographic
constants. A Bayesian approach does not require fixed temporal patterns in rates,
and it can use data from multiple maternal age groups to estimate current q5. It can
also produce uncertainty measures that incorporate both sampling error and potential
errors in demographic assumptions. The proposed appoach uses simple parametric
models to describe fertility and mortality levels and patterns over the period covering
approximately 30 years before the survey, and treats the parameters in these models
as unknown quantities with prior distributions.
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Probabilistic Indirect Estimation of Under-Five Mortality Rates

1 Introduction

The probability of death between birth and age five, which demographers usually denote

as q5 or as the under-five mortality rate (U5MR), is arguably the most important public

health indicator in many of the world’s poor countries. Many countries in which it is

critical to measure child mortality lack good vital registration systems, however, and direct

estimation of q5 is impossible without age-specific population and death data. In such

situations demographers use survey data, such as Demographic and Health Surveys, and

indirect methods.

There is a large methodological literature on estimating U5MR from surveys, spanning

at least half a century (e.g., Brass & Coale 1968, Rajaratnam et al. 2010, Alkema &

New 2014, Verhulst 2016, Wilson & Wakefield 2018). In this paper I introduce a new

probabilistic approach to the classic Brass problem of indirect estimation from aggregate

data on children ever born and children dead by age of women.1

2 Notation

Analysis of maternal birth histories depends on the age patterns of fertility and child

mortality at the time the survey, and on the recent history of changes in vital rates. In

order to establish a vocabulary for discussing these patterns, define

� f(m, t) as the fertility rate at maternal age m and time t

� µ(z, t) as the mortality rate at age z and time t

� period cumulative mortality at age x and time t as Hp(x, t) =
∫ x
0
µ(z, t) dz

� cohort cumulative mortality at age x and time t as Hc(x, t) =
∫ x
0
µ[ z, t− x+ z)] dz

For a survey at time t = 0, also define

1Data in this form is usually called Summary Birth Histories (SBH). This contrasts with Full Birth

History (FBH) survey data, which includes detailed timing information on individual births and child

deaths for each respondent.
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� f ∗(m) = f(m, 0) as the period fertility schedule

� µ∗(z) = µ(z, 0) as the period mortality schedule

� period cumulative mortality at age x as H∗p (x) =
∫ x
0
µ∗(z) dz

� cohort cumulative mortality at age x as H∗c (x) =
∫ x
0
µ(z, z − x) dz

where an asterisk always denotes a quantity measured on the survey date t = 0.

With these definitions the expected fraction dead among all children born x years before

the survey (a cohort measure) is

q∗c (x) = 1− e−H∗
c (x) (1)

Among the a-year-old women in a survey, the expected fraction of their children born

at maternal age m (these children were born at t = m−a; survivors are a−m years old) is

w∗(m|a) =
f(m,m− a)∫ a

12
f(m,m− a) dm

(2)

where I assume that f(m, t) = 0 for all ages outside of m ∈ [12, 50). Note that the

denominator in Eq. (2) is the expected parity of a-year-old women in the survey, P ∗c (a) =∫ a
12
f(m,m− a) dm.

The expected fraction dead among children born to a-year-old women surveyed is

Q∗(a) =

∫ a

12

w∗(m|a) q∗c (a−m) dm (3)

where this expression depends on recent trends in age-specific fertility (via f(m, t) in Eq.

(2)) and mortality (via µ(z, t) in Eq. (1)). The fundamental problem in indirect estimation

is to learn about current period mortality (specifically q∗5 = 1 − e−H
∗
p (5)) from sample

observations of births and child deaths by mother’s age ({Da, Ba, a = 12 . . . 49}).

3 Brass Indirect Estimation

The workhorse of indirect estimation methods for q5 is the Brass child mortality approach

(Ch.3 United Nations 1983, Trussell 1975). The Brass method uses robust demographic

patterns to estimate q5 from survey reports on women’s ages, parities, and child deaths.
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The Brass method begins with the observation that, with continuous rates over age and

time, there is an intermediate maternal age m̃(a) ∈ [12, a] in Eq. (3) such that

Q∗(a) = q∗c [ a− m̃(a) ] (4)

This implies a one-to-one relationship between mother’s and children’s ages: in a survey, the

expected fraction dead among all children of a-year-old mothers equals the probability that

a child born exactly a− m̃(a) years earlier would no longer be alive. In most demographic

regimes a − m̃(a) would be an increasing function of a, because children born to older

women would have had longer exposure to mortality risks.

In an important extension, Feeney (1980) noted that if mortality changes approximately

linearly over time (and fertility rates are constant) then there is a robust mapping from

the cohort mortality indices in Eq. (4) to period indices at specific times in the past:

Q∗(a) = q∗c [ a− m̃(a) ] ≈ qp[ a− m̃(a) , t̃(a) ] (5)

where qp(x, t) = 1−e−Hp(x,t) refers to the period mortality schedule at time t. Under typical

demographic circumstances the allocated time t̃(a) would usually be a decreasing function

of a, implying that data on the survival of older mothers’ children is informative about

period mortality at earlier times, longer ago.

Thus an observable quantity – the proportion dead among children of surveyed a-year-

old women – provides information about past period mortality. The exact relationsips in

Eqs. (4) and (5) depend on fertility and mortality patterns by age in the years before the

survey, and on their changes over time.

Brass discovered that – when all vital rates are constant – regularities in age schedules2

imply simple, robust relationships between Q∗ values for women’s age groups and q∗c values

for integer ages of children. In particular he calculated that with constant vital rates the

expected fraction of children dead among mothers aged 30–34 (which must theoretically lie

between q∗(0) = 0 and q∗(23)) would always be quite close to q∗(5). Feeney (1980) further

demonstrated that with unchanging fertility rates

2in particular, the concentration of death in very early childhood, and the concentration of fertility in

a woman’s 20s and early 30s

4



Q∗30−34 ≈ qp(5,−5) (6)

The Brass method and its variants (Trussell 1975, United Nations 1983) fine tune the

time allocation with age-specific parity information, but these adjustments are small. As

a result, with approximately constant fertility rates it is possible to estimate under-five

mortality in the recent past indirectly, using the proportion of children dead among the

women who are currently 30–34.

4 A Bayesian Generalization of the Brass Approach

The Brass approach is ingenious. It uses consistent patterns in demographic rates to

produce good estimates under a wide range of circumstances. However, it requires demo-

graphic stability in age-specific rates, it uses only one age group of women to estimate the

recent under-five mortality rate, and it is a deterministic algorithm that does not generate

estimates of its likely precision.

A probabilistic Bayesian model can exploit the same regularities without these restric-

tions. A Bayesian approach does not require fixed temporal patterns in rates, and it can

use multiple age groups to estimate current q5. It can also produce uncertainty measures

that incorporate both sampling error and potential errors in demographic assumptions.

In the next subsections, I outline a Bayesian model that can improve the Brass method’s

accuracy and utility in modern settings where q5 estimates are needed. This appoach uses

simple parametric models to describe fertility and mortality levels and patterns over the

period covering approximately 30 years before the survey, and treats the parameters in

these models as unknown quantities with prior distributions.

The fundamental idea behind this estimation approach is familiar, even if the Bayesian

vocabulary is not. Demographic parameters that affect vital rates are unknown, but they

are not complete mysteries. Before seeing the data from any survey, we already have

information about plausible demographic rates and patterns – e.g., 25 is a much more

likely modal age of childbearing than 35, and a 2% annual decrease in mortality rates is

much more likely than a 10% annual decrease. The standard Brass approach chooses fixed

5



(but demographically plausible) values for fertility and mortality parameters that affect

Da

Ba
, such as a Coale-Demeny model life table family or a specific pattern of fertility by

age. In contrast, a Bayesian approach uses weighted averages over a range of uncertain

(but demographically plausible) scenarios rather than picking exactly one. The result is a

distribution of possible q5 values rather than a point estimate, with the most likely values

those that are consistent with both survey data and plausible underlying age patterns.

4.1 Period Fertility f ∗( )

I use an empirical model with four “archetype” schedule shapes φ∗1 . . . φ
∗
4, each estimated

from a set of 149 schedules for middle- and low-income countries in the 2003 Census In-

ternational Database (IDB). Figure 1 illustrates the four archetype shapes, φ∗j ∈ R38.

Each represents a fertility pattern over integer ages 12, . . . , 49 such that φjm ≥ 0 and∑
m φ
∗
jm = 1. These four shapes were calculated empirically (Cutler & Breiman 1994, Eug-

ster & Leisch 2009) to minimize the total squared errors when approximating the 149 IDB

schedules with convex combinations of archetypes φ̂ =
∑4

j=1Wj · φ∗j ∈ R38.

A population’s period fertility schedule at the time of the survey is

f ∗(m |TFR,W1 . . .W4) = TFR ·
4∑
j=1

Wj · φ∗jm (7)

over ages 12 . . . 49, where TFR is a non-negative scalar and W is a 4-simplex of non-

negative weights that sum to one. In order to average over a wide range of fertility age

patterns, I use a prior distribution for weights W that assigns similar probabilities to many

different schedule shapes, namely

(W1 . . .W4) ∼ Dirichlet(1, 1, 1, 1)

The prior for TFR is

TFR ∼ Uniform(1, 10)

so that all levels of total fertility in [1,10] are equally likely a priori.
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Figure 1: Archetype age patterns of fertility. Period schedules are convex combinations of

these archetypes, multiplied by TFR.
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4.2 Period Mortality µ∗( )

For the period mortality schedule on the survey date, µ∗( ), I use the Wilmoth et al.

(2012) mortality model, in which two parameters (q5, k) determine nine piecewise-constant

mortality rates for intervals starting at ages 0, 1, 5, 10, . . . , 35. This model is especially

convenient for U5MR estimation, because q5 enters directly as the parameter that affects

the overall level of mortality.

I assume a priori that all q5 values between 0 and 500 per thousand are equally plausible

q5 ∼ Uniform(0, .50)

The k parameter in the Wilmoth et al. (2012) model affects the shape of the mortality

schedule, with values typically in the [-2,+2] range. k has only weak effects on predicted

Q∗a values in the model, so I use a simple prior

k ∼ N(0, 1)

Empirical approximations that follow require calculating q(x) values at ages 0.5, 1.5, ..., 37.5,

so I further divide the [0, 1) interval in this model. I assume that the mortality rate in the

first six months of life is 1µ
∗
0 + ∆, and that in the second six months it is 1µ

∗
0 − ∆. Un-

der the reasonable assumption q(0.5) = 0.80 q(1), this means that ∆ = −2 ln(.20e+0.5·1µ∗0 +
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.80e−0.5·1µ
∗
0). With this additional subdivision of infant mortality, the two parameters (q5, k)

determine a set of piecewise-constant rates for ten age intervals that start at lower limits

L = 0, 0.5, 1, 5, 10, . . . , 35.

4.3 Fertility and mortality change

Fertility changes at rate r

I assume that age-specific fertility rates have been changing exponentially at rate r through-

out the reproductive lifetimes of the women in the survey (approx. the 35 years), so that

f(m, t) = f ∗(m) · ert

where f ∗(m) is the period schedule on the survey date (t = 0). This is a very simple

assumption, but it allows changing rates in a way that the original Brass method does

not. Schmertmann et al. (2013) investigated indirect estimators with this simple model of

fertility change and found it effective. If r < 0 then a greater fraction of births would have

happened longer ago, implying longer exposures and a higher expected fraction dead at

any given level of current q5.

Under this assumption the fertility term in eq. (2) is f(m,m− a) = f ∗(m) · e−r(a−m),

so that

w∗(m, r|a) ∝ f ∗(m) · erm (8)

For the rate of fertility change I use the prior

r ∼ N(0, .0252)

which assigns approximately 90% prior probability to the range between -4% and +4%

annual change. Results are insensitive to the exact specification.

Mortality changes at rate s

I make a parallel assumption for mortality rates, namely

µ(z, t) = µ∗(z) · est
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where s is the annual rate of mortality change. As with fertility, if s < 0 and mortality

is declining then this model allows for higher mortality rates in the past, which implies a

higher expected fraction dead at any given level of current q5.

For the rate of mortality change I use the same prior distribution as fertility

s ∼ N(0, .0252)

As with r, results are insensitive to the exact specification.

Under these assumptions the expected proportion dead among children born x years ago

in Eq. (3) is

q∗c (x, s) = 1− exp

[
−
∫ x

0

µ∗(z) e−s(x−z) dz

]
(9)

= 1− exp

[
−e−sx

∫ x

0

µ∗(z) esz dz

]
Finally, under these assumptions about changing rates Eq. (3) for the expected pro-

portion dead among children ever born to a-year-old women becomes

Q∗(a, r, s) =

∫ a

12

w∗(m, r|a) q∗c (a−m, s) dm (10)

which depends on the rates of fertility and mortality change (r and s), and on the period

schedules at the time of the survey (f ∗ and µ∗).

4.4 Likelihood

Observed births by age B20 . . . B49
3 are informative about the level, change, and age pattern

of fertility (TFR, r, and W1 . . .W4, respectively). Conditional on births, child deaths

by mother’s age D20 . . . D49 are informative about the level, change, and age pattern of

mortality (q5, s, and k, respectively).

I assume that births are independent Poisson variables at each age

Ba ∼ Poisson(Wa P
∗
ca)

3I omit women under 20 from the calculations because the implicit assumption that child mortality risks

are independent of mother’s age are much less likely to hold for very young mothers. This is a well-known

problem.
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Table 1: Parameters and effects on expected fraction of children dead by maternal age

Parameters Interpretation Effects.on.Q. Strength.of.Effect

TFR ∼ U [1, 10] Fertility Level None Zero

W1 . . .W4 ∼

Dirichlet(1, 1, 1, 1)

Fertility Timing later fert → lower Q∗ at

all ages

Weak

q5 ∼ U [0, .500] Mortality Level higher q5 → higher Q∗

at all ages

Very Strong

k ∼ N(0, 1) Mortality Timing higher k → higher Q∗ at

higher maternal ages

Weak

100r ∼ N(0, 2.52) Rate of Fert Change higher r → lower Q∗ at

higher maternal ages

Very Weak

100s ∼ N(0, 2.52) Rate of Mort Change higher s → lower Q∗ at

higher maternal ages

Very Strong

and that the number of deaths conditional on births is also Poisson

Da|Ba ∼ Poisson(Ba Q
∗
a)

Table 1 summarizes the probabilistic model parameters, and includes a brief description

of the direction of change and sensitivity of Q∗a (or equivalently, Da|Ba) with respect to

each parameter. Sensitivity experiments, summarized in the last column, indicate that

expected fractions dead Q∗a change very little with fertility parameters or with mortality

shape parameter k. Indeed, these insensitivities were a main rationale for Brass’s original

approach. Expected fractions dead are very sensitive to q5 and, importantly, to the rate of

mortality change s.

## Loading required package: kableExtra

## Warning: package ’kableExtra’ was built under R version 3.5.3

4.5 Markov Chain Monte Carlo (MCMC) Estimation in Stan

I programmed the model in the Stan MCMC language (Carpenter et al. 2017), as imple-

mented in the rstan package in R (Stan Development Team 2016, R Core Team 2016). The

empirical posterior density of (q5, s) values is the basis for the main calculations below.
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5 Some Preliminary Results

I estimated posterior distributions for (q5, s, k, TFR, r,W) for data from each of 137 De-

mographic and Health Survey datasets, downloaded from the IPUMS-DHS website (Boyle

et al. 2019). Here I briefly illustrate model output and show some examples of promising

(and problematic) preliminary results.

5.1 Example 1: Ethiopia 2016 DHS

5.1.1 Indirect Estimates

The Ethiopia 2016 DHS survey included detailed birth history data from 15683 women

15–49 years old, of whom 12185 were age 20+. Because full birth histories are available, it

is possible to calculate period child mortality rates directly. These direct estimates, which

were downloaded from the UN-IGME website (UN Inter-agency Group for Child Mortality

Estimation n.d.) serve as a comparison for the indirect, Bayesian approach based only on

summary data.

Estimating the model described above in Stan produces a sample of parameter values,

with frequencies proportional to posterior probabilities. That is, likely values are sampled

more often and vice versa. Figure 2 below illustrates draws from 4 MCMC chains for

parameters TFR, q5, r, and s.4

4 The figure includes discarded ”warmup” values at the beginning of each chain, indicated with a grey

background.

11



r s

TFR q5

0 300 600 900 0 300 600 900

0 300 600 900 0 300 600 900

0.00

0.05

0.10

0.15

0.20

−0.06

−0.04

−0.02

0.00

0.02

0

2

4

6

−0.03

−0.02

−0.01

0.00

chain

1

2

3

4

Ethiopia 2016

Figure 2: MCMC parameter traces, Ethiopia 2016 DHS

and Table 2 provides a summary of the marginal posterior distributions for these param-

eters, including the median, 10th, and 90th percentiles of the draws illustrated in Figure

2.

Table 2: Posterior Summary, Ethiopia 2016

Parameter Median Q10 Q90

TFR 5.15 4.73 5.57

1000 q∗
5 73 69 77

r -0.014 -0.018 -0.010

s -0.040 -0.045 -0.033

Thus the analysis indicates that 2016 data on Ethiopian births and deaths by mother’s

age is consistent with a 2016 period q∗5 of 73 per 1000, and that q∗5 is in the [69,77] per 1000

range with 80% probability. Further, age patterns in parity and fertility by age provide

evidence that mortality had been falling rapidly in the period over which the children

represented in the sample were born: the posterior median of s is -4.0% per year, and there

is an 80% probability that the rate of mortality change is in [-4.5%,-3.3%].

Figures 3 and 4 show the model fits to average parity and to proportion dead in the

Ethiopia 2016 data, and Figure 5 shows the estimated childhood mortality schedule. All

three figures include 80% posterior intervals as well as point estimates.
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Figure 3: Average Parity by Age of Mother (Data + Fit), Ethiopia 2016 DHS
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5.1.2 Comparison to Direct Estimates

Because the Ethiopia 2016 collected full birth histories, we can compare the Bayesian

indirect estimates to direct estimates of period mortality from event/exposure data. Figure

6 makes this comparison, showing the direct estimates reported by UN-IGME and the

implied time series of period q5 from the Bayesian model. For Bayesian estimates, sampled

(q∗5, s) pairs from the joint posterior are translated into period q5 values at times 0,5,10, and

15 years before the average interview date; the purple band shows 80% pointwise intervals

for all of the sampled time series.
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Figure 6: Direct Event-Exposure Estimates [+90% intervals = black bars] vs. Bayesian

Indirect Estimates [+80% intervals = purple bands], Ethiopia 2016 DHS

The main result from Figure 6 is clear. In this case (and many others not shown) there

is a close correspondence between indirect time series estimates from the Bayesian model

applied to summary data, and direct estimates from detailed data. For Ethiopia 2016 data

a model based on age patterns of Ba and Da yields good estimates of recent period q5

values, as well as the supplementary information in Figures 2, 3, 4 and 5.

5.2 Example 2: Lesotho 2009 DHS

UN-IMGE (n.d.) data includes both direct and indirect (Brass-Feeney) estimates for period

q5. Figure 7 illustrates.
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Figure 7: Direct Event-Exposure Estimates [+90% intervals = black bars] vs. Bayesian

Indirect Estimates [+80% intervals = purple bands], Lesotho 2009 DHS

In the Lesotho 2009 case there is a smaller sample (5784 women 20–49), and the recent

trend in mortality is upward. The Bayesian model finds a median q∗5 of 113 per 1000, with

an 80% probability range of [103,124] per 1000. In contrast to the falling mortality rates in

Ethiopia, for Lesotho 2009 the most plausible rate of mortality change is positive: +2.5%

per year, with an 80% range of [+1.4%, +3.8%].

As seen in Figure 7, a Bayesian model for indirect estimation with flexible time trends

not only matches the direct estimates well, but it also outperforms the usual Brass approach

to indirect estimation.

5.3 Example 3: Niger 2006 DHS (problematic)

Figure 8 below illustrates the Bayesian model fit against direct estimates from the Niger

2006 DHS. Here the model’s performance is obviously very poor.
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Figure 8: Direct Event-Exposure Estimates [+90% intervals = black bars] vs. Bayesian

Indirect Estimates [+80% intervals = purple bands], Niger 2006 DHS

These problematic results remain a puzzle (as of this draft, Sep 2019). Although Niger

is not logically different from other places covered by DHS samples, it is an outlier in terms

of fertility levels (mean parity at age 49 was above 8) and mortality levels (in most maternal

age groups 20-30% of children ever born had died). One clue to pursue is the similarity of

Bayesian estimates to the trajectory of indirect estimates (red crosses in the Figure).

6 Discussion

A Bayesian approach to indirect mortality estimation appears very promising. It also

suggests that many other indirect estimation techniques could be re-cast as probabilistic

models with demographic priors derived from large data collections.
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7 Between now and EPC

The agenda between Oct 2019 and the EPC meeting includes

� development of summary measures to evaluate model performance over the whole set

of DHS samples

� investigation of problematic cases such as Niger 2006, in order to improve the model,

or to better understand its limitations

� experiments with more flexible time series models for mortality. Expected proportions

dead by age Da

Ba
are quite sensitive to the rate of mortality change s. Given the

occasional time series failure like the Niger 2006 case, this suggests that it may be

valuable to model mortality time series more flexibly

� more detailed comparisons to the United Nations “B3” estimates for time series of

U5MR

A Appendix: Approximations

As illustrated in Fig 9, I approximate expected fertility histories by assuming that women

at integer age a (exact age ∈ [a, a + 1)) are all a + 0.5 years old, and that their births

happened when they were exact ages m = 12, 13, . . . a, at rates

f ∗(12) e−r·(a−11.5), f ∗(13) e−r·(a−10.5), f ∗(14) e−r·(a−9.5) . . . f ∗(a)e−r·(0.5)

so that Eq (3) becomes

Q∗(a) ≈
∑a

m=12 f
∗(m) e−r (a−m+0.5) q(a−m+ 0.5)∑a
m=12 f

∗(m) e−r (a−m+0.5)
(11)

where the denominator in Eq (11) represents th expected parity of women at integer age a

Pa =
a∑

m=12

f ∗(m) e−r (a−m+0.5)
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Figure 9: Discrete Approximation for fertility and mortality histories

B Appendix: Discretizing the mortality model’s H∗c (x)

terms

Cumulative mortality to the cohort born exactly age x years earlier is

H∗c (x) =

∫ x

0

µ∗(z) e−s(x−z) dz

In a model like Wilmoth et al. (2012) with piecewise-constant mortality hazards m1 . . .m10

over age intervals A1 . . . A10, each defined by an lower and higher limit Aj = [Lj, Hj) this

is
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H∗c (x) =

∫ x

0

[∑
j

I(z ∈ Aj) ·mj

]
e−s(x−z) dz

= e−sx
∑
j

mj

[∫ x

0

I(z ∈ Aj) e+szdz
]

= e−sx
∑
j

mj

[∫ MIN(Hj ,MAX(Lj ,x)

Lj

e+szdz

]

= e−sx
∑
j

mj

[∫ Uj(x)

Lj

e+szdz

]

≈ e−sx
∑
j

mj

[∫ Uj(x)

Lj

1 + sz +
1

2
s2z2dz

]

= e−sx
∑
j

mj

{
(Uj(x)− Lj) + s ·

(
U2
j (x)− L2

j

2

)
+ s2 ·

(
U3
j (x)− L3

j

6

)}
For the fixed grid of x values x = 0.5, 1.5, . . . , 37.5 used by the approximation in Eq (11)

the Uj(x) and Lj terms are constants, so that the approximation can be simplified to

H∗c (x) ≈ e−sxm′
[
Zx1 Zx2 Zx3

] 
1

s

s2


where m ∈ R10 is the vector of piecewise rates from the extended Wilmoth et al. model,

and Zx =
[
Zx1 Zx2 Zx3

]
is a 10× 3 matrix of pre-calculated constants.

The probability of death by any age on the grid of x values is then q∗c (x) = 1− e−H∗
c (x).
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