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Abstract 

Chronic seasonal crop and livestock loss due to heat stress and rainfall shortages can pose a serious 

threat to human health, especially in sub-Saharan Africa where subsistence and small-scale farming 

dominate. Young children, in particular, are susceptible to undernutrition when households experience 

food insecurity because nutritional deficiencies affect their growth and development. Whilst climate 

change can potentially pose serious health impacts on children, the evidence is inconclusive and rather 

limited to small-scale local contexts.  Furthermore, little is known about the differential impacts of 

climatic shocks on health of population subgroups. This study therefore aims to investigate the impacts 

of climate variability on child health using data from three nationwide Demographic and Health 

Surveys for Ethiopia conducted in 2005, 2011 and 2016 (n=31,096). Chronic and acute undernutrition, 

measured as stunting, wasting and underweight for children aged under five, is used as a health 

indicator. Climate variability is measured by the Standardised Precipitation Evapotranspiration Index 

(SPEI). The results show a negative relationship between SPEI and stunting and underweight. Children 

exposed to droughts in utero or during infancy are particularly vulnerable to drought-induced stunting 

and underweight.  The climate impacts vary with population subgroups whereby boys and children 

whose mothers have lower level of education and living in the rural area where households are 

engaged in agricultural activities are more vulnerable to drought exposure. This suggests that 

nutritional intervention should target these particularly vulnerable groups of children. 
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1. Introduction 

Climate change poses serious risks to populations in Sub-Saharan Africa, mainly through undermining 

food security (Funk and Brown 2009). Millions of people in the region live in rural areas and depend 

on rain-fed agriculture for their subsistence. Rising temperatures and irregular rainfalls have increased 

the frequency of droughts in the region.  At the same time, heavy precipitation is projected to rise and 

consequently increase the risk of floods and landslides. The consequences for the well-being of 

populations exposed to such climatic shocks are manifold – from the loss of lives, water contamination 

and home damage due to floods, to reduced agricultural production and food insecurity caused by 

droughts and floods. 

Likewise, the increase in frequency and intensity of extreme weather events has raised concerns about 

their impacts on child undernutrition (Lloyd et al. 2011; Springmann et al. 2016). Not only is 

undernutrition one of the main causes of death for children age under 5 years, it also affects growth 

and development and has long-run effects on health, wellbeing and labour market productivity in 

adulthood (Martins et al. 2011; McGovern et al. 2017). A systematic review and meta-analysis of 18 

studies on undernutrition in Ethiopia report an upward trend in the prevalence of stunting and 

underweight in recent years (2010-2014) with respect to the earlier period (1996-2010) (Abdulahi et 

al. 2017). Indeed, climate change may have played a role in delaying a progress in decreasing the levels 

of child undernutrition in Ethiopia. Understanding to what extent and how climate change can impact 

child health is of high policy relevance because this allows for interventions to reverse the course of 

undernutrition which hinder a country’s economic and social progress towards the Sustainable 

Development Goals (Muttarak and Dimitrova 2019).  There is however limited reliable evidence and 

robust study designs on the impacts of extreme climate events on child undernutrition (Belesova et al. 

2019; Phalkey et al. 2015). Most studies focus on small-scale local context, fail to report data quality 

control procedures and represent shortcomings in the climate exposure assessment methods e.g. lack 

of drought definition and direct measures of drought. The lack of nationally representative study 

makes it difficult to assess the extent to which climate change affects child undernutrition.  

To this end, this study aims  to explore the impacts of droughts on the nutrition status of children aged 

under five in Ethiopia using the nationally representative data obtained from three rounds of the 

Demographic and Health Surveys for Ethiopia. We additionally consider differential vulnerability, 

investigating the extent to which droughts affect the health outcome of children of different 

demographic and socioeconomic groups. Specific age of exposure that are critical for children’s 

physical development are also considered.  

2. Data and measurement 

We use two datasets to assess the impacts of droughts on the nutrition status of children:  1) multiple 

rounds of Demographic and Health Surveys (DHS) for Ethiopia and 2) gridded climate data from the 

Global SPEI database (SPEIbase).  

2.1. Demographic and health variables   

The DHS surveys are based on nationally representative samples of households and women of 

reproductive age (15-49 years) with a focus on fertility behaviour, infant and child mortality, child and 

reproductive health, nutrition status, family planning and other health-related issues. The surveys also 

include socioeconomic information (such as parental education, household wealth, residence, and 

occupation), which are expected to influence the nutrition status of children. In this analysis, three 

rounds of DHS Ethiopia are merged – 2005, 2011 and 2016, with a combined sample size of 31,096 
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children under the age of five. The selected DHS rounds also include GPS coordinates of household 

clusters,1 which are used to link the survey and climate data (see section 2.3).    

To measure child undernutrition, we use anthropometric data for children aged under 5 and construct 

indicators for stunting, wasting and underweight as binary outcomes. Stunting refers to children with 

a low height-for-age (HAZ) defined as below -2 standard deviations (SD) of the WHO Child Growth 

Standards median. Wasting and underweight refer to children with a low weight-for-height (WHZ) and 

weight-for-age (WAZ), respectively, both defined as below -2 SD of the WHO Child Growth Standards 

median. Stunting captures the cumulative effects of undernutrition (chronic malnutrition) while 

wasting indicates acute weight loss. Being underweight can indicate both acute and chronic 

malnutrition. It is often used in combination with the above measures as an operational indicator.  

 

2.2. Climate variables 

Gridded climate data on Standardised Precipitation Evapotranspiration Index (SPEI) is retrieved from 

the Global SPEI database. The data are available at 0.5° spatial resolution for the whole globe and are 

based on Climatic Research Unit’s TS 3.25 input data (monthly precipitation and potential 

evapotranspiration) for the period 1901-2016 (Harris et al. 2014).  

SPEI measures the intensity and spatial distribution of droughts. It is considered superior to other 

drought indices (such as the SPI), since it captures the effects of evaporation and transpiration caused 

by temperature, along with precipitation (Vicente-Serrano et al. 2010). Additionally, SPEI can be 

calculated at different time scales (from 1 to 48 months) to account for the cumulative effect of 

deficient precipitation and/or excessive evapotranspiration over previous periods. In this analysis, we 

use a 3-month time scale, which has been found to detect drought conditions in the Sahel region more 

accurately than longer time scales (Beguería et al. 2010).  

SPEI is measured on an intensity scale with both negative values, indicating drought conditions, and 

positive values, indicating wet conditions. The index can be used to further categorise drought 

conditions into mild ( -1 < SPEI < 0), moderate (-1.5 < SPEI ≤ -1), severe (-2 < SPEI ≤ -1.5), and extreme 

(SPEI ≤ -2) (Mckee et al. 1993; Paulo and Pereira 2006). 

We restrict the SPEI data to the summer season only (months June to September), which is the main 

growing season for agricultural crops in Ethiopia. Seasonal averages are then estimated for each 

location based on the monthly SPEI values. Deficient or delayed rainfall during the summer season 

impacts both crop and livestock production. It can indirectly affect human health through reduced 

food intake and lower availability and quality of drinking water.  

  

                                                           
1 Household clusters are enumeration areas used in DHS, which usually refer to villages in rural areas and city 
blocks in urban areas.  
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Figure 1: Mean summer SPEI by grid cell 2000-2016 (left) and country average of summer SPEI from 

1950 to 2016 (right). Notes: Own estimates based on CRU TS 3.25 monthly temperature and 

precipitation data. Dotted line indicates yearly values; solid line indicates a 10-year running mean. 

2.3. Matching the surveys and climate data 

More recent rounds of DHS have collected information on the geographical location of household 

clusters. We use GPS coordinates to geo-locate children’s residence and match them with the gridded 

climate data. To keep the identity of survey participants confidential, DHS displaces household clusters 

in a random direction by 2km for urban areas, 5km for rural areas, and additional 10km for 5% of all 

clusters (Burgert et al. 2013). We account for this by creating a 10km radius around each cluster and 

averaging the climate information for all grid cells that fall within that area. The 10km buffer area also 

accounts for the fact that household’s nutritional status may be affected not only by climate conditions 

in their immediate location but also in nearly locations. 

3. Methods 

We use logistic regression models to quantify the impact of climate shocks on child nutrition status. 

The basic model takes the following form:  

𝐻𝑒𝑎𝑙𝑡ℎ𝑖,𝑔 = β1𝑆𝑃𝐸𝐼𝑡,𝑔 + β2𝑍𝑖 + β3𝑆𝑢𝑟𝑣𝑒𝑦𝑖 + 𝑓(a6, a12, a18, a24, a36, a48) + α𝑔 + ϵ𝑖,𝑔 

where Health takes the value 1 if child i at interview in location g is stunted/wasted/underweight, and 
0 otherwise. SPEI is the climate condition in period of exposer t at grid-cell g. Z is a vector of individual 
and household characteristics, which are expected to affect a child’s neutrino status. Survey are 
dummy variables for each of the survey rounds. The function f(·) is a restricted cubic age spline with 
knots at 6, 12, 18, 24, 36, and 48 months of age at interview. The spline function fits polynomials of 
degree 3 between the defined knots in a way which ensures that levels and derivatives are equal on 
each side, and quadratic terms at each end. αg are grid fixed effects. Errors are clustered at the grid-
cell level. Household clusters are allocated in 50x50km grid-cells. 

The following control variables are included in vector Z: sex of the child, if the child is a twin or not, 
quarter of birth (January to March, April to June, July to September, October to December), highest 
level of education of the mother, household wealth quintile, sex of the household head, mother’s age 
at giving birth, mother’s height, residence (urban or rural), and occupation of the household head.  

For stunting, we look at exposer to climate shocks at each year of the child’s life, starting from in-utero 

(while the child was in the womb) until the year when the survey was conducted. We also average 

climate conditions during the entire period. For wasting and underweight, we consider exposer to 

climate shocks during the latest agricultural season prior to the interview because we expect a more 

immediate response to droughts.  
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4. Results 

4.1. Descriptive statistics 

Table 1: Summary statistics 

    Nutrition status 

  
Number of 

observations % stunted % wasted  % underweight 

Sex of child     
Male 15,925 42.13 13.38 30.13 

Female 15,171 38.53 10.87 26.73 

Mother's level of education     
No education 21,855 44.2 13.57 32.53 

Primary 6,897 36.03 9.78 22.51 

Secondary 1,707 21.02 6.92 11.2 

Tertiary 637 14.14 5.68 5.62 

Household's wealth      
Lowest quintile 9,623 44.69 16.12 35.44 

Lower quintile 5,643 45.87 12.78 33.04 

Middle quintile 5,092 42.36 11.92 29.43 

Higher quintile 4,704 40.73 8.91 24.34 

Highest quintile 6,034 25.56 7.58 14.47 

Residence     
Urban 5,002 24.62 8.8 14.04 

Rural 26,094 43.35 12.77 31.16 

Occupation of household head     
Non-agriculture 6,944 31.59 9.5 19.45 

Agriculture 19,425 44.81 12.57 32.06 

Not working 3,991 36.47 14.94 28.08 

Other 736 32.73 11.35 24.07 

Survey year     
2005 9,722 47.03 13.28 33.48 

2011 11,187 43.17 11.85 30.76 

2016 10,187 34.25 11.94 23.53 

Sample size 31,096       

4.2. Main results 

Table 2 presents regression estimates of the odds of stunting, wasting and underweight for children 

aged under 5. We find that higher SPEI during the observed life-course reduces the odds of a child 

being stunted and underweight by 23% and 17%, respectively, both at 1% significance level. An 

increase in SPEI during the latest summer season does not affect the odds of a child suffering from 

wasting or underweight.  
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Figure 2: Effects of summer season SPEI on undernutrition of children aged 0-5. Notes: The 

coefficients are obtained from logistic regression estimates. Odds ratios are displayed on a log 

scale. 

Figure 3: Impacts of summer season SPEI on stunting and being underweight (percentage points 

with 95% Cis) 
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Table 4: Impacts of summer droughts on stunting and being underweight by age at exposure and 

age at measurement (percentage points). Notes: *** p<0.01, **p<0.05, * p<0.1. 

4.3. Differential vulnerabilities 

In Table 4, we include interaction terms between the climate measure and various household 

characteristics in order to identify what types of households are more vulnerable to climate 

variabilities. The household characteristics include mother’s level of education, family’s occupation, 

residence and sex of the household head. Our findings suggest that children whose mothers’ have 

lower levels of education are more likely to be malnourished during drought periods. We also find that 

boys and children living in rural areas are more vulnerable to droughts.  
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Figure 5: Interaction effects between summer drought and individual and household 

characteristics. Notes: Models 1 to 6 show the results of separate logistic regression models. Odds 

ratios are displayed on a log scale. 

5. Discussion and conclusions  
 
We find that exposure to droughts increases the likelihood of stunting and underweight for children 

age under five in Ethiopia. Children who were exposed to droughts in utero or during infancy (age 0 

to 1 year) are particularly vulnerable to undernutrition. Boys are more likely to be undernourished 

compared to girls both in normal time and time of droughts. Unlike in southern Asian countries like 

India (Muttarak and Dimitrova 2019), we find no evidence of gender preferential feeding practice in 
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Ethiopia whereby the risk of undernutrition in girls catch up with that of boys (given that naturally 

boys require more calories when growing up and hence are more likely to be stunted or 

underweight).  Furthermore, children whose mothers have lower level of education and living in the 

rural area where households are engaged in agricultural activities are more vulnerable to drought 

exposure. This suggests that nutritional intervention should target these particularly vulnerable 

groups of children. 

 

  



10 
 

References 
 
Abdulahi, A., Shab-Bidar, S., Rezaei, S., & Djafarian, K. (2017). Nutritional Status of Under Five 

Children in Ethiopia: A Systematic Review and Meta-Analysis. Ethiopian Journal of Health 

Sciences, 27(2), 175–188. 

Beguería, S., Vicente-Serrano, S. M., Angulo-Martínez, M., Beguería, S., Vicente-Serrano, S. M., & 

Angulo-Martínez, M. (2010). A Multiscalar Global Drought Dataset: The SPEIbase: A New 

Gridded Product for the Analysis of Drought Variability and Impacts. Bulletin of the American 

Meteorological Society, 91(10), 1351–1356. https://doi.org/10.1175/2010BAMS2988.1 

Belesova, K., Agabiirwe, C. N., Zou, M., Phalkey, R., & Wilkinson, P. (2019). Drought exposure as a risk 

factor for child undernutrition in low- and middle-income countries: A systematic review and 

assessment of empirical evidence. Environment International, 131, 104973. 

https://doi.org/10.1016/j.envint.2019.104973 

Burgert, C. R., Colston, J., Roy, T., & Zachary, B. (2013). Geographic Displacement Procedure and 

Georeferenced Data Release Policy for the Demographic and Health Surveys [SAR7]. 

Funk, C. C., & Brown, M. E. (2009). Declining global per capita agricultural production and warming 

oceans threaten food security. Food Security, 1(3), 271–289. 

https://doi.org/10.1007/s12571-009-0026-y 

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly 

climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 

623–642. https://doi.org/10.1002/joc.3711 

Lloyd, S. J., Kovats, R. S., & Chalabi, Z. (2011). Climate change, crop yields, and undernutrition: 

development of a model to quantify the impact of climate scenarios on child undernutrition. 

Environmental Health Perspectives, 119(12), 1817–1823. 

https://doi.org/10.1289/ehp.1003311 

Martins, V. J. B., Toledo Florêncio, T. M. M., Grillo, L. P., Franco, M. do C. P., Martins, P. A., Clemente, 

A. P. G., et al. (2011). Long-Lasting Effects of Undernutrition. International Journal of 



11 
 

Environmental Research and Public Health, 8(6), 1817–1846. 

https://doi.org/10.3390/ijerph8061817 

McGovern, M. E., Krishna, A., Aguayo, V. M., & Subramanian, S. (2017). A review of the evidence 

linking child stunting to economic outcomes. International Journal of Epidemiology, 46(4), 

1171–1191. https://doi.org/10.1093/ije/dyx017 

Mckee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to 

time scales. Eighth Conference on Applied Climatology, 17–22. 

Muttarak, R., & Dimitrova, A. (2019). Climate change and seasonal floods: potential long-term 

nutritional consequences for children in Kerala, India. BMJ Global Health, 4(2), e001215. 

https://doi.org/10.1136/bmjgh-2018-001215 

Paulo, A. A., & Pereira, L. S. (2006). Drought Concepts and Characterization. Water International, 

31(1), 37–49. https://doi.org/10.1080/02508060608691913 

Phalkey, R. K., Aranda-Jan, C., Marx, S., Höfle, B., & Sauerborn, R. (2015). Systematic review of 

current efforts to quantify the impacts of climate change on undernutrition. Proceedings of 

the National Academy of Sciences, 112(33), E4522–E4529. 

https://doi.org/10.1073/pnas.1409769112 

Springmann, M., Mason-D’Croz, D., Robinson, S., Garnett, T., Godfray, H. C. J., Gollin, D., et al. (2016). 

Global and regional health effects of future food production under climate change: a 

modelling study. The Lancet, 387(10031), 1937–1946. https://doi.org/10.1016/S0140-

6736(15)01156-3 

Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Angulo, M., & El Kenawy, A. (2010). A New 

Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with 

Current Drought Index Datasets Based on the Palmer Drought Severity Index. Journal of 

Hydrometeorology, 11(4), 1033–1043. https://doi.org/10.1175/2010JHM1224.1 

 
  



12 
 

Annex: Logistic regression results (full tables) 
 

Table 1: Effects of monsoon season SPEI on nutritional status of children aged 0-5 

  (1) (2) (3) (4) 
  stunted underweight wasted underweight 

Climate variables         
Average SPEI since birth 0.779*** 0.847***     
  (0.059) (0.053)     
SPEI last summer      0.972 0.925 
      (0.057) (0.055) 
Drought last summer         
          
Controls         
Sex (female) 0.845*** 0.854*** 0.788*** 0.848*** 
  (0.030) (0.027) (0.033) (0.027) 
Twin (yes) 2.024*** 2.142*** 1.533*** 2.343*** 
  (0.263) (0.288) (0.220) (0.303) 
Mother's educ (primary) 0.917* 0.833*** 0.850*** 0.830*** 
  (0.046) (0.043) (0.051) (0.039) 
Mother's educ (secondary) 0.618*** 0.576*** 0.629*** 0.552*** 
  (0.071) (0.090) (0.100) (0.079) 
Mother's educ (tertiary) 0.496*** 0.301*** 0.589*** 0.329*** 
  (0.104) (0.069) (0.100) (0.070) 
Wealth (poorer) 0.915* 0.888** 0.962 0.886** 
  (0.048) (0.046) (0.064) (0.044) 
Wealth (middle) 0.797*** 0.752*** 0.917 0.752*** 
  (0.050) (0.041) (0.072) (0.041) 
Wealth (richer) 0.729*** 0.596*** 0.701*** 0.603*** 
  (0.047) (0.042) (0.055) (0.040) 
Wealth (richest) 0.505*** 0.490*** 0.591*** 0.502*** 
  (0.048) (0.045) (0.064) (0.045) 
Household head (female) 1.125** 1.105* 1.145** 1.077 
  (0.065) (0.064) (0.077) (0.060) 
Age at birth (years) 0.994** 0.998 1.002 0.998 
  (0.003) (0.003) (0.004) (0.003) 
Mother's height (cm) 0.995*** 0.996*** 0.999 0.996*** 
  (0.000) (0.000) (0.000) (0.000) 
Residence (rural) 1.180 1.187 0.763** 1.160 
  (0.154) (0.167) (0.090) (0.160) 
Occupation (agriculture) 1.053 1.167** 1.203** 1.117* 
  (0.064) (0.073) (0.089) (0.065) 
Occupation (not working) 0.985 1.075 1.076 1.043 
  (0.069) (0.079) (0.078) (0.073) 
Occupation (other) 0.999 1.172 1.017 1.194 
  (0.129) (0.152) (0.157) (0.168) 
          
Pseudo R2 0.118  0.093 0.075 0.107 
Observations 18,503 18,897 21,409 22,150 

*** p<0.01, ** p<0.05, * p<0.1  
Notes: The coefficients are obtained from logistic regression estimates. Controls included but not 
displayed: age splines, quarter of birth, quarter and year of interview, grid fixed effects. Errors are 
clustered at the grid-cell level. Odds ratios are displayed on a log scale. 

 


