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Abstract

Background Individuals are often either observed or modeled as passing through a sequence of
discrete states. These are usually either simplified into transition probabilities for Markov-derived
aggregate statistics, or else retained for pattern and group detection using sequence analysis. Markov-
derived statistics are of limited scope (moment stats), and sequence analysis doesn’t typically lead to
heuristic understanding of macro patterns.

Objective We broaden the scope of aggregate patterns and summary indices that may be calculated
from trajectory data, including trajectories generated from Markov models. For example, one might
calculate the time-since-event or time-to-event pattern of episode duration.

Methods We introduce the concepts of clocking and alignment as a new framework for generating
novel statistics from trajectories.

Data We use different data to demonstrate concepts and give example applications. We use pub-
lished transition probabilities (originally derived from US HRS data) to simulate discrete trajectories
of employment states. We will use fertility and union trajectories derived from Colombian DHS
data for example applications. We will also have health applications from either directly observed or
simulated trajectories, tbd.

Results We demonstrate several new measures in the areas of health, family, and labor demography.

Conclusions We generate several new patterns and measures in the areas of health, family, and
labor demography. An R package is presented to facilitate experimentation with these operations.

1 Introduction

There is a void between the methodological approaches of Markov statistics and sequence analysis.
Markov-generated quantities, like trends and levels, are useful metrics but such information does not
necessarily lead to an understanding of processes or of typical experiences. The age-structured data that
underlie such Markov calculations are surely appreciated for their articulated and often-regular patterns,
but (i) the estimation of such rates already blurs over the features of underlying life trajectories, and (ii)
such age patterns serve the objective statistic. Insofar as sequence analysis retains and reasonably typifies
life trajectories it might be used to infer processes and identify new patterns. We propose a two-part
framework to extract patterns hidden within trajectory data. Such patterns might be age-like patterns
of novel prevalence, state-episode-occupancy time measures, or they may be used to derive new rates.
Using this framework, we aim to zoom in on demographic patterns that emerge at various stages of the
life course, and so describe a given demographic phenomenon (state) from a variety of perspectives.

We first define clock measures, a way to inscribe time, order, prevalence, or other measures into
individual life trajectories. This step is analogous to defining a rewards matrix in multistate Markov
models (see e.g. Caswell and Zarulli 2018), and the ends are not entirely dissimilar. As an example of
a concrete Markov link, Dudel and Myrskylä (2017a) defines a matrix algebra approach to estimate the
expected number of episodes of a given state that individuals experience in a given multistate world.
Taken together with the total expected state occupancy time, one can infer an average episode duration.
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And there are both clunky and elegant approaches close at hand to derive an age pattern of expected
episode duration. Such measures (even that hasn’t been done before) would already add insight to
demographic processes. Clock measures are much more flexible than this, and enable the researcher to
decompose expected episode durations into expected time spent and left within episodes. Further one
can visualize full distributions of these and other prevalence or episode order statistics.

Second we define alignment operations, which shift trajectories to have synchronous timing with
respect to a specified state-episode. Researchers already do similar things: for example Iacobelli and
Carstensen (2013) propose a flexible use of time-since-event scales, and Riffe et al. (2017) define flexible
Lexis spaces in which life lines are aligned both on birth and on death, and this has been used to reveal
hidden health patterns (Riffe et al. 2016) and pathways (Potente and Monden 2018, Raab et al. 2018).
We here propose more flexible alignment procedures, which allow trajectory synchronization on the start
or end of a specified episode (e.g., first, last, longest).

In combination, clock and alignment operations open a large space for the derivation of demographic
macro patterns. In the following sections we give concrete examples to illustrate these two steps. We
end with a few suggestive macro patterns. At present, or examples pertain to labor demography, but
in a later stage, this manuscript will include examples from different domains of demography including
family, fertility, and health. We here use simulated life trajectories, although in the final manuscript we
will use both simulated and observed trajectories. Work shown here is fully reproducible, and we also
offer an R package, Spells, which enables flexible clock and alignment operations, and will in the future
play well with other popular time series and sequence analysis packages, such as TraMineR.

2 Data

To demonstrate concepts, we simulate trajectories from a published transition matrix (Dudel and Myrskylä
2017b). This matrix refers to black females aged 50-100 in 1994, and it contains age-structured tran-
sition probabilities for movements between employment, inactivity, and retirement, as well as mortality
from these three states. Simulation is done using the rmarkovchain() function from the R package
markovchain (Spedicato 2017). A glimpse of the first 10 randomly generated individuals is shown in
Figure 1. These ten individuals will be recycled in all of the following data manipulations used to
demonstrate concepts. All aggregate calculations of age patterns (and so on) are based on a simulated
population of 10000 trajectories starting in employment at age 50.1

Figure 1: Ten randomly generated state sequences from the 1994 transition matrix of black females
(Dudel and Myrskylä 2017b)
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3 Clocks

3.1 A binary trajectory matrix gives prevalence

Standard calculations of prevalence typically proceed by imputing reference states with 1s (with 0s else-
where) and taking column means over survivors in each age. Figure 2 shows such a data construct, where

1We appreciate the irony that the trajectories used here came from an age-stage Markov model, which means that the
diversity of patterns we derive ought to give even more food for thought.
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the state sequence matrix has been converted to a binary matrix, with 1s for employment episodes, 0s
for other living states (shown blank). Typically one might impute NA values in dead states for this sort of
calculation. Operations on objects such as this can yield age patterns of prevalence or expectancies, for
example. This is not what we call a clock, but this data construct illustrates the setup. As the number
of simulated trajectories increases, the resulting age pattern of prevalence will approach the values in the
respective column of the so-called fundamental matrix in a Markov approach.

Figure 2: Binary imputation of employment spells
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3.2 Duration, step, and order clocks

To derive measures other than prevalence, we simply change the 1s to other values. For example, if to
calculate an age-pattern of spell duration, instead impute time steps with episodes with values equal to
the total episode length (Fig. 3a). Column means of the resulting object would give the average episode
duration conditional on being in any point of an episode. If instead one wanted to condition on episodes
starting (ending) in each age then impute the same values in only the first (last) time step within each
episode (not shown). One may also wish to calculate time spent or left in the state episode, per Fig. 3b
or 3c 2. Episodes can also be imputed with other markers, such as episode order, as in Fig. 4 for the case
of employment spells, or episode fractions.

There is room for creativity in defining clock measures such as these, and we encourage experimen-
tation along these lines. Clock measures are then aggregated in some way. In these examples, value
alignment is with respect to episodes, but aggregation alignment is still structured by age, such that
statistics across individuals in an array produce age patterns. However, one may wish to synchronize
trajectories in ways other than time since birth.

2In practice we increment values by 1
2

for mid-state clocking.
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Figure 3: Inactivity spells from Figure 1 are imputed with different duration count variables. It’s probably
better to add 1

2 to the displayed running values.

(a) Static; Total episode duration of inactivity.

8 8 8 8 8 8 8 8

4 4 4 4

1

2 2

1 1

8 8 8 8 8 8 8 8

5 5 5 5 5 1

2 2

1 5 5 5 5 5

7 7 7 7 7 7 7

50 60 70 80 90 100

1

2

3

4

5

6

7

8

9

10

R
an

do
m

 in
di

vi
du

al
 i

(b) Step; Time spent in episode of inactivity.
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(c) Step; Time left in episode of inactivity
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Figure 4: Employment episodes from Figure 1 are imputed with order count variables.

(a) Employment episode order, increasing.
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(b) Employment episode order, decreasing.
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3.3 Alignment

Episodic clock values are aggregated according to some structuring criteria. In all previous figures, the
structuring criteria was chronological age, which is how data were generated in the first instance. To
introduce a term, the sequences in these figures are left-aligned on the event of birth. This is the most
common default alignment in social and medical sciences, but other choices may be more compelling for
particular questions.

For late-life processes, birth is usually decades away from the events and states of interest, and sharper
empirical regularity may be be found with respect to other alignment criteria. Aligning lifelines requires
two choices: 1) a reference moment or anchoring event must be selected, and 2) the alignment direction
must be chosen. A reference event could be any instance of entry, exit, or other compelling anchor point,
such as a spell midpoint– ergo such events may relate to episodes themselves. For repeated events, the
choice of anchoring episode could itself follow a regular criterion, such as first, last, or longest episode.
The direction of alignment could be left, right, center, or perhaps something else.

Fig. 5 shows a set of four alignment selections out of the many possible choices. Fig. 5b left-aligns on
entry to first retirement (if any). One could also choose last, longest, or some other episode of retirement,
or of course right-align on exit. Fig. 5c left-aligns on entry into each individual’s longest spell of inactivity,
whereas Fig. 5d right-aligns on exit from the same spell.

These examples are subset of many possible alignments, in this case column shifting within rows of
a matrix. Alignment as shown here is probably insufficient to reveal patterns if one is visualizing raw
trajectories, as in these demonstrative figures. One would probably want to define sort operations (row-
swapping) for this, and that is not something we have ventured to do at this point 3. Other visualization
techniques (ignoring clocks for now) might follow an alignment operation (e.g. Fasang and Liao 2014).
In the present, we instead aggregate up to macro patterns.

3Possibly the TraMineR universe already has sort functionality, we need to check.
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Figure 5: The sequences from Figure 1 under a variety of alignment types.

(a) Right-aligned on death.
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(b) Left-aligned on first retirement.
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(c) Left-aligned on entrance to longest spell of inactivity
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(d) Right-aligned on exit from longest spell of inactivity
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4 Aggregate patterns

Given the choices in clock measures and alignments, the researcher has many degrees of freedom in
calculating episode statistics in the aggregate. As a first example, and with no substantive justification
as of yet4, say we’d like to know about inactivity spell patterns by time since first employment exit. We
calculate from the same simulated object used for previous exposition. Fig. 6 displays mean conditional
episode durations of inactivity structured by time since exiting one’s first employment spell, ergo right-
aligned on first employment spell and conditional on i) having exited employment, and ii) being in an
inactivity spell. Time spent (red, per Fig. 3b ) and time left (blue, per Figure 3c) sum to total duration
(black, per Fig. 3a) as one would hope. Figs 6b, 6c, and 6d show that mean statistics deviate from median
and don’t necessarily represent the underlying distribution for any of these three measures.

Figure 6: Inactivity spell statistics by time since end of first employment. Bold lines are median.

(a) Inactivity spells: mean total duration, time spent,
and time left.
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(b) Total duration, mean vs quantiles.
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(c) Time remaining in spell, mean vs quantiles.
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(d) Time spent in spell, mean vs quantiles.
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4We’ll swap these examples out with something more substantively compelling.
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5 Discussion

We propose a formal set of data operations to allow for creative derivation of demographic macro patterns.
Our examples makeup a small subset of those possible, even with the small state space used in our
example. To give a sense of the number of macro patterns possible, multiply (1) the number of state
categories, (2) episode selection options (first, last, longest, etc), (3) alignment options (left, right, center,
etc), and clock options (duration, time spent/left, order, and many others), and it becomes evident that
we might have produced over one hundred different macro patterns, just for this relatively simple example
case.

It may be surprising to notice that most of these patterns, even though ours resulted from a simple
Markov process with a small set of simple and monotonic age patterns, have some character to them.
They contain information. Presumably the age patterns that entered into said Markov model do not
capture the entire story, and raw observed state sequences are expected to bear stronger degrees of co-
dependency. And if we wish to learn something new about a given demographic process, the researcher
has (i) large degrees of freedom in selecting macro episode patterns, and (ii) is limited only by one’s own
creativity in doing so.

The purpose of episode clocks and sequence realignment is to detect important patterns in data (or
model results) that are likely to otherwise go unnoticed. Some reasonable priors might include that (i)
life course events condition each other; (ii) temporal proximity to life course transitions is likely to be
an important predictor of other transitions; (iii) within-episode patterns of other characteristics might
be monotonically increasing or decreasing, concave, or convex. Aggregate patterns derived after such
operations may be sharper and of more obvious interpretation and consequence than are age patterns.

Promises

This manuscript is an early draft. In a future version we will offer vignette-style applications for a
selection of different demographic phenomena, including health and fertility/family demography, resident
status of migrants, each with a variety of programmatically generated macro patterns.
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