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Introduction
How many times did Jeanne Calment cheat death before becoming the oldest person to have ever lived? How
exceptional was this feat, compared, for instance, to becoming a centenarian in th 1700s? Usual measures
of longevity only give partial answers to this question. As human longevity has increased steadily in most
countries during the last century, more and more people reach ages that used to be considered as advanced
or even exceptional. For instance, the proportion of person-years lived above 100 years of age has been
multiplied by more than 100 in the Netherlands since the 1950s (HMD (2019)). This changing meaning of
old age is raising the question of what it takes to become a (very) old person in a given mortality context.

In a nutshell, the dominant model of ageing is the one proposed by Strehler and Mildvan, which postulates
that senescence originates from a constent battle between the internal “vitality” of individuals and the external
“challenges” that they face (Strehler and Mildvan (1960)). With declining vitality, individuals become more
likely to die. From an individual point of view, each time somebody survives one of these random challenges,
he or she has “cheated death”. Translated at the population level, this idea can be expressed through the
ability to survive to an “expectable” age. In this framework, someone who survives to the the life expectancy
at birth can be considered to have beaten the odds. Consequently, becoming an “old” person can be measured
in terms of outliving a reasonable age given the current mortality context.

This is not exactly the same as a classic life table, which states that, in order to reach a given age t, one
needs to survive, year after year, to the next age until reaching t. The probability to reach t is thus simply
the value of the survival function lx at age t, i.e. lt. An alternative way to represent this process is to think
in terms of successively reaching reasonable age milestones. According to this idea, each individual is born
with a given number of years of life that he or she can expect to reach. This value is the life expectancy at
birth (e0). An individual who survives to this age receives a “new lease of life”, which is smaller than the
initial one if mortality is increasing with age, and corresponds to the value of the remaining life expectancy
at age x = e0. By pursuing this reasoning, reaching age t requires thus to repeat this feat successively until
reaching age t. This process of sucessfully beating the odds in order to cheat death a enough times to reach
(very) old age can be used as the corner stone of a new measure of (succesful) ageing. This measures does
not use years of age as its basic unit of time, but instead exploits the concept of sucessfully “cheating death”
from one “life” to the next. Its unit is thus a “life” and it captures longevity by measuring how many “lives”
n it takes to reach a given age t. This idea bares resemblances to those of “repeated resuscitations”(Vaupel
and Yashin (1987)) and of “lifesaving” (Finkelstein (2005)), albeit without the comparative dimention of
contrasting different mortality scenarios.

In this extended abstract I will define and explore the properties of this new proposed measure. I will then
apply it to a selection of past and present populations and compare it with other classical measures of
mortality such as life expectancy and survival probabilities.

Methods
Definitions
As mentioned above, the cornerstone of the proposed measure is the Expected Age at Death, i.e. the age that
people can expect to reach, provided that they have survived to a given age x.
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EAD(x) = x+ e(x) (1)

At birth, EAD(x) is simply equal to life expectancy, since EAD(0) = e(0) + 0. For the individuals who
survive to EAD(0), their updated EAD is given by EAD(EAD(0)) = e(e(0)) + e(0). Given an arbitrary
target age t, I define n as the number of times that EAD(x) needs to be successively applied to itself until
EAD(x) ≥ t. Algebraically, this is equivalent to saying that EAD(x) is composed with itself n times.

n such that EAD(x)◦n ≥ t (2)

The computation of n can be done with a loop, by successively applying EAD(x) to the value of its previous
iteration until reaching EAD(x) ≥ t. Visually, this method consists in starting from age 0, move vertically up
to the curve of EAD(x), bounce to the x-axis until the value of EAD(0), and repeat this until EAD(x) ≥ t
(Figure 1). This requires interpolating values of EAD(x) for non-integer ages x, for instance using a monotonic
spline, since EAD(x) is by definition monotonically increasing because e(x) is positive.

i = 1 : EAD(0) = e(0) + 0 < t (3)
i = 2 : EAD(EAD(0)) = EAD ◦ EAD = EAD◦2 = e(e(0)) + e(0) < t (4)

... (5)
i = n : EAD(EAD(...(EAD(0)))) = EAD◦n ≥ t (6)

Figure 1 shows that, in the Netherlands in 2015 (HMD (2019)), it took 6 iterations of EAD(x) (or “lives”) to
reach age 100, i.e. n = 6. It is possible to consider non-integer values of n if one considers the possibility
of fractional iterates (Isaacs (1950)). Empirically, this requires using the inverse function of EAD(x) and
looking for the value of x, such that EAD(x) = t exactly. This value can be called t∗, and is the age at
which the remaining life expectancy allows to reach exactly t. This value can be used to identify the exact
number of iterations (n∗ ∈ R) such that EAD(n) = t, by using the inverse function of EAD(i), such that
EAD(x)◦n∗ = t (see Appendix for the detailed procedure). This fractional value n∗ can also be thought as
a continuous function of tn∗ = n(t), i.e. the exact number of times someone needs to survive to his or her
conditional expected age at death in order to reach age t.
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Figure 1: Empirical computation of the number of lives required to become centenarian (Netherlands 2015)

The function n(t) does unfortunately not have a closed expression in terms of t, since it is indirectly defined
through EAD(x). It is however possible to approximate it with surprising precision. To understand how, let
us define the probability to survive to age t as

l(t) =
n∏
i=1

pi (7)

where pi is the probability to survive to the next iteration of EAD(x). Since pi does not depend on t,
this is not sufficient to express n as a function of t. However, we can proceed by analogy to reach a good
approximation. Let us imagine that, instead of working with life expectancy as a measure of reasonably
attainable age, we used the Median Age at Death (MAD) of those alive at age x. By definition, half of the
people alive at age x will survive to MAD(x), or in life table terms l(MAD(x))

l(x) = 0.5. In this slightly different
scenario, surviving to age t means repeatedly surviving to successive values of MAD(x), i.e. n is defined as
the number of iterations of MAD(x) until MAD(x) ≥ t, i.e. n such that MAD(x)◦n ≥ t. Since in this case
p(i) = 0.5∀i, the probability to survive to age t is equal to the product of the probability to survive to each
iteration of MAD(x), so

l(t) = p(i)n = pn = 0.5n (8)

Isolating n, we obtain
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n(t) = log(l(t))
log(0.5) (9)

Using this equation, it is possible to directly compute the number of (integer) iterations of MAD(x) required
to reach age t without having to perform the loop described above. In the case of EAD(x), p(i) is not
constant by definition, but it turns out that it follows a relatevely regular pattern. In the case of Dutch life
tables from 1850 to 2016, p(1) varies between about 0.5 in the 1850s and 0.6 in the 2010s (reflecting the
decreasing weight of premature mortality). After a few “lives” though, p(i) seems to stabilize around 0.4 for
all the mortality schedules (Figure 2). This value is below 0.5 because each section of the distribution of the
ages at death (the life-table dx) above the modal age at death is right-skewed and thus EAD(x) is higher
than MAD(x).
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Figure 2: Probability to reach a new life (Netherlands 1850-2016)

Using this information, as well as additional analyses (see Appendix), and proceeding by analogy with the
case of the Median Age at Death, we can postulate that a good approximation for n(t) is given by the following
formula

n̂(t) = ln(l(t))
ln(0.38) + 1 ∼= n(t) (10)

where l(t) is the value of the survival function at age t (i.e. the probability to reach age t starting from age 0).
The addition of a unit intercept, reflects the fact that, when most people survive to t, l(t) approaches 1 and
ln(l(t)) approaches 0, meaning that, on average people need only one life to survive to t. This formula also
means that n(t) practically only depends on mortality before age t, reflected in l(t), but not on mortality after
age t. This is not intuitive, because n(t) relies on EAD(x), and thus on e(x), which depends on mortality at
all ages above age x.

Simulations
In order to test the behavior of n(t) and its approximation n̂(t), I designed a simple simulation using the
Gompertz law (µ(x) = α · eβ·x). Figure 3 shows that, for a given value of e(0), n(100) is smaller when α is
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high and β is low (i.e. high baseline and low rate of ageing) than when when α is low and β is high (i.e. low
baseline and high rate of ageing). For instance, for a life expectancy of 80, n(100) is about 4 when α = 8e− 5
and β = 0.08, but is about 8 when α = 1e− 5 and β = 0.12. In other words, the number of times someone
needs to survive its EAD is more sensitive to the rate of ageing than the baseline level of mortality. This
is not surprising, since e(x) decreases with age, and thus the majority of the “lives” take place at old age,
where mortality is more affected by the rate of senescence than the baseline mortality lelvel.

Figure 3 also confirms that the approximation n̂(t) =∼= ln(l(t))
ln(0.38) + 1 is good at all combinations of α and β

(the red lines match closely the pattern of the black lines). At very low levels of mortality, when it takes
only about 2 “lives” to reach 100 years of age, it slightly underestimates the true value of n∗, but these are
extreme cases where the loop approach might be slightly biased. The discrepancy is altogether very small,
and the patterns are almost identical. The results of this simulation provide thus additional support to the
approximation of n(t) by n̂(t).
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Figure 3: Relation between n(100) and e(0) across simulated Gompertz forces of mortality

Applications
Applications of this measure are manifold. I present here two: the evolution of n(100) over time, and the
decomposition of the difference in n(100) by age.

Evolution of n(100) over time
Most countries experienced a steady decrease of n(100) over time. Exceptions to this regularity can be found
in certain Eastern European countries, where the number of lives it takes to be a centenarian has increased
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sharply between the 1950s and the 2000s, before decreasing again in the last decade (Figure 4). While these
trends are sometimes correlated to those of e(0), it is not systematically the case. For instance, during the
early 1960s and late 1980s, life expectancy at birth increased sharply while it was getting more and more
difficult to become a centenarian. This probably reflects the fact that these sharp gains in life expectancy
were due to gains in premature mortality (for instance through a better control of alcohol consumption),
while mortality at older ages tended to increase during the same time.
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Figure 4: Evolution of n(100) in Russia and Bulgaria since the 1950s

Another interesting pattern is found in some, but not all Western European countries, such as France and
Scotland (Figure 5). In these two countries, n(100) gradually increased during the nineteenth century despite
a general improvement in e(0). In France, a new born gained about 10 years of life expectancy between 1820
and 1900. In the meantime, he or she had to “cheat death” two more times in order to become a centenarian.
This paradox is explained by a simultaneous decrease of premature mortality and increase of old-age mortality.
In 1900, it was thus easier for this child to reach adulthood, but harder to become a centenarian. The Scottish
case, while less dramatic, shows a similar evolution between the 1850s and 1920s. Other countries who display
this paradox are Sweden between the 1750s and the 1850s, and, to a lesser extent, Denmark and Norway
between the 1850s and 1900s, Australia between the 1920s and 1940s, Italy between the 1880s and 1940s, and
Portugal between the 1940s and 1960s. It seems however absent in countries like Finland, Switzerland, and
the Netherlands, which all have data going back at least to the 1880s. This paradox could be the signature of
a “failure of success”, which might have increased mortality at old ages by saving frailer children.
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Figure 5: Evolution of n(100) in France and Scotland since the 1800s

Decomposition
The measure n(t) can be manipulated as any other summary measure of mortality. It can for instance be
decomposed by age, and even by cause of death, provided that data on age- (and cause-)specific mortality are
available. Numerical decomposition techniques (Andreev, Shkolnikov, and Begun (2002)) are perfeclty suited
for this task. For instance, in 2016 Dutch men had to “cheat death” 6 times (5.99) to become a centenarian,
against 5 times (4.97) for women. In other words, today in the Netherlands, a man who reaches 100 years
of age has ‘survived’ one more time than a woman of the same age. Figure 6 indicates that most of this
additional effort took place after 80 years of age, and almost none of it before age 60
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Figure 6: Decomposition by age of the difference in n(100) between Dutch men and women

Conclusion
Humans are reaching old age ever more easily, which questions our approach and measure of ageing. I
propose a new measure of mortality that sheds a new light on what it takes to reach old age. This measure
is the number of times someone needs to exceed his or her predicted age at death in order to reach an
arbitrary target age (for instance 100 years of age). It reflects at the population level, the dominant theories
of individual ageing and is relatively easy to compute. Thanks to a surprisingly simple empirical relationship,
it also has an alternative interpretation as a function of the probability to survive to a given age.

This measure of “how many lives” people need to become a centenarian provides a new perspective on the
mortality in past and present populations. Notably, it suggests that in some European countries, but not all,
overal gains in mortality were at some time balanced at older ages by increasing risks of death, leading to a
paradoxical situation where it was becoming “easier” to reach adulthood, but “more difficult” to become a
centenarian.

Future extensions of this work that I indend to pursue are to test whether the approximation of n̂(t) hold
for both sexes, or if the parameters are different, the application of these techniques on cohort data (which
necessitates to project the mortality of non-extinct cohorts), and more sophisticated simulations, for instance
using a Siller model to observe the behavior of n(t) in the presence of varying infant mortality.
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Appendix
Appendix 1: code for Figure 1

# load single-year life table for the Netherlands (both sexes) in 2015
library(HMDHFDplus) # package to access HMD data
load("C:/remund/Data/hmd_user.RData") # personal user and password to HMD
lt <- readHMDweb(CNTRY = "NLD", item = "bltper_1x1", username = us, password = pw)
lt1 <- lt[lt$Year == 2015,]

# age groups
x <- unique(lt$Age)

# function to interpolate EAD(x) for non-integer values of x
eadfun <- splinefun(x = x, y = lt1$ex + x, method = "monoH.FC")

# main loop
nmax <- 20 # maximum value of n
t <- 100 # target age
ead <- rep(NA, nmax) # empty vector to compute successive values of EAD(i)
ead[1] <- lt1$ex[1] # EAD(0) = e(0)
i <- 1 # counter for number of iterations
while(ead[i] < t & i < nmax){

i <- i + 1
ead[i] <- eadfun(ead[i-1]) # composition of EAD(x) with itself

}
ead <- na.omit(ead) # remove missing values (if n < nmax)
n <- length(ead) # n (number of iterations until EAD(x) > t)

# plot the loop
plot(x, eadfun(x), type = "l", xlab = "x", ylab = "EAD(x)", las = 1, ylim = range(x), xlim = c(0,max(x)))
points(c(0,ead[-n]), ead, pch = 16, col = 2)
lines(rep(c(0,ead[-n]), each = 2), rep(ead, each = 2) * rep(c(0,1),n), type = "b", col = 8)
axis(3, at = c(0,ead[-n]), labels = 1:n, col = 1, col.ticks = 2, col.axis = 2, cex.axis = 0.7)
mtext(side = 3, text = "i", col = 2, line = 2)
abline(h = t, col = 3)
mtext(side = 4, at = t, text = paste("t =",t), col = 3, las = 1, line = 0.4, cex = 0.7)
text(ead[n-1], ead[n], col = 2, labels = paste("n = ",n), pos = 4, cex = 0.7)

# find and plot non-integer value of n (n*)
tstar <- optim(par = 95, fn = function(x){abs(eadfun(x) - t)}, upper = t, lower = 0, method = "L-BFGS-B")$par
abline(v = tstar, col = 3)
mtext(text = paste("t* =",round(tstar,2)), side = 1, at = tstar, col = 3, cex = 0.7, adj = 0)
inv.ead.i <- splinefun(x = c(0,ead[-n]), y = 1:n) # inverse function of EAD(i)
axis(3, at = tstar, col = 3, labels = "")
nstar <- round(inv.ead.i(tstar),2) # fractional value of n
mtext(side = 3, at = tstar, text = paste("n* =",nstar), cex = 0.7, line = 0.5, col = 3, adj = 0)
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Appendix 2: code for Figure 2

# load single-year life table for the Netherlands (both sexes) in 2015
library(HMDHFDplus) # package to access HMD data
load("C:/remund/Data/hmd_user.RData") # personal user and password to HMD
lt <- readHMDweb(CNTRY = "NLD", item = "bltper_1x1", username = us, password = pw)
lt1 <- lt[lt$Year == 2015,]

# age groups
x <- unique(lt$Age)

# function to interpolate EAD(x) for non-integer values of x
eadfun <- splinefun(x = x, y = lt1$ex + x, method = "monoH.FC")

# main loop
nmax <- 20 # maximum value of n
t <- 100 # target age
ead <- rep(NA, nmax) # empty vector to compute successive values of EAD(i)
ead[1] <- lt1$ex[1] # EAD(0) = e(0)
i <- 1 # counter for number of iterations
while(ead[i] < t & i < nmax){

i <- i + 1
ead[i] <- eadfun(ead[i-1]) # composition of EAD(x) with itself

}
ead <- na.omit(ead) # remove missing values (if n < nmax)
n <- length(ead) # n (number of iterations until EAD(x) > t)

# plot the loop
plot(x, eadfun(x), type = "l", xlab = "x", ylab = "EAD(x)", las = 1, ylim = range(x), xlim = c(0,max(x)))
points(c(0,ead[-n]), ead, pch = 16, col = 2)
lines(rep(c(0,ead[-n]), each = 2), rep(ead, each = 2) * rep(c(0,1),n), type = "b", col = 8)
axis(3, at = c(0,ead[-n]), labels = 1:n, col = 1, col.ticks = 2, col.axis = 2, cex.axis = 0.7)
mtext(side = 3, text = "i", col = 2, line = 2)
abline(h = t, col = 3)
mtext(side = 4, at = t, text = paste("t =",t), col = 3, las = 1, line = 0.4, cex = 0.7)
text(ead[n-1], ead[n], col = 2, labels = paste("n = ",n), pos = 4, cex = 0.7)

# find and plot non-integer value of n (n*)
tstar <- optim(par = 95, fn = function(x){abs(eadfun(x) - t)}, upper = t, lower = 0, method = "L-BFGS-B")$par
abline(v = tstar, col = 3)
mtext(text = paste("t* =",round(tstar,2)), side = 1, at = tstar, col = 3, cex = 0.7, adj = 0)
inv.ead.i <- splinefun(x = c(0,ead[-n]), y = 1:n) # inverse function of EAD(i)
axis(3, at = tstar, col = 3, labels = "")
nstar <- round(inv.ead.i(tstar),2) # fractional value of n
mtext(side = 3, at = tstar, text = paste("n* =",nstar), cex = 0.7, line = 0.5, col = 3, adj = 0)
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Appendix 3: code for Figure 3

# load single-year life table for the Netherlands (both sexes) in 2015
library(HMDHFDplus) # package to access HMD data
load("C:/remund/Data/hmd_user.RData") # personal user and password to HMD
lt <- readHMDweb(CNTRY = "NLD", item = "bltper_1x1", username = us, password = pw)
lt1 <- lt[lt$Year == 2015,]

# age groups
x <- unique(lt$Age)

# function to interpolate EAD(x) for non-integer values of x
eadfun <- splinefun(x = x, y = lt1$ex + x, method = "monoH.FC")

# main loop
nmax <- 20 # maximum value of n
t <- 100 # target age
ead <- rep(NA, nmax) # empty vector to compute successive values of EAD(i)
ead[1] <- lt1$ex[1] # EAD(0) = e(0)
i <- 1 # counter for number of iterations
while(ead[i] < t & i < nmax){

i <- i + 1
ead[i] <- eadfun(ead[i-1]) # composition of EAD(x) with itself

}
ead <- na.omit(ead) # remove missing values (if n < nmax)
n <- length(ead) # n (number of iterations until EAD(x) > t)

# plot the loop
plot(x, eadfun(x), type = "l", xlab = "x", ylab = "EAD(x)", las = 1, ylim = range(x), xlim = c(0,max(x)))
points(c(0,ead[-n]), ead, pch = 16, col = 2)
lines(rep(c(0,ead[-n]), each = 2), rep(ead, each = 2) * rep(c(0,1),n), type = "b", col = 8)
axis(3, at = c(0,ead[-n]), labels = 1:n, col = 1, col.ticks = 2, col.axis = 2, cex.axis = 0.7)
mtext(side = 3, text = "i", col = 2, line = 2)
abline(h = t, col = 3)
mtext(side = 4, at = t, text = paste("t =",t), col = 3, las = 1, line = 0.4, cex = 0.7)
text(ead[n-1], ead[n], col = 2, labels = paste("n = ",n), pos = 4, cex = 0.7)

# find and plot non-integer value of n (n*)
tstar <- optim(par = 95, fn = function(x){abs(eadfun(x) - t)}, upper = t, lower = 0, method = "L-BFGS-B")$par
abline(v = tstar, col = 3)
mtext(text = paste("t* =",round(tstar,2)), side = 1, at = tstar, col = 3, cex = 0.7, adj = 0)
inv.ead.i <- splinefun(x = c(0,ead[-n]), y = 1:n) # inverse function of EAD(i)
axis(3, at = tstar, col = 3, labels = "")
nstar <- round(inv.ead.i(tstar),2) # fractional value of n
mtext(side = 3, at = tstar, text = paste("n* =",nstar), cex = 0.7, line = 0.5, col = 3, adj = 0)
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Appendix 4: Additional anaylses using the Human Mortality Database
I computed n(t) for different values of t between 85 and 110 years of age, using almost all available life tables
from the HMD (yielding 104,324 observations), and fitted a linear regression between ln(n(t)) and ln(l(t)).
The results show that the best fit is obtained by fixing the intercept at 1, yielding p = 0.38. In this case, R2
reaches 0.999. These results will receive more attention in the final version of the paper.
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Figure 7: Empirical relationship between n(t) and l(t) in a large set of real populations
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