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1 Abstract

order to provide unobserved mortadi ral vital rates) using
demographic summary measuz alysis has been carried out by
using life expectancy at age

g the 20th century leads a growing interest in
modeling and pro ) ttality rates and life expectancy alike for demogra-
hesis of an imminent boundary of human life has
v empirical evidence (HMD 2019 [1], Oeppen and
Vaupel [5]). In their inflyéntial work, Oeppen and Vaupel coin the "best-practice
life expectancy” (BPLE) hypothesis, that is the maximum female life expectancy
observed in a given calendar year which shows a linear increase at a constant
pace over time since 1840. The BPLE concept leads to an increasing appeal on
methods based on extrapolating life expectancy, offering a higher level of forecast
accuracy with the advantages of being more easily understood, portaryng the
analisys, using just a univariate time serie (eg life expectancy at birth). Many
promising studies have been carried out, starting from Lee (2006)[2], Torri and
Vaupel (2012) [8], Raftery et al. (2013)[7], Pascarius et al. (2018)[@], Nigri et al.

been repeatedly dispro



2019 (working paper)[d].

The prediction of future mortality levels by direct forecasting of life ex-
pectancy or more general, using the demographic summary measures, is much
more intuitive, compared to models based on extrapolation of age-specific rates.
Unfortunately, the reconstruction of vital rates from summary measures does not
seem to be effortless, jeopardizing in many cases the accuracy of the estimations.

The literature shows efforts in this sense, such as the Log-quadratic model
Wilmoth et al., (2012)[10] the model introduced by Sevcikova et al. (2016)[11]
by adopting an inverse approach to death rates estimation starting from life
expectancy. Unfortunately, none of the proposed models would seem to excel
over others.

Our paper contributes to literature proposing a novel model to o

X and Y respectively with the format year x ag e columns represent
the value for each age and ro { car. The X matrix is

database for traif abase for testing our model.

4 Model

The term neural network originated as a mathematical model that replicates
the biological neural nefworks of the human brain. NN architecture includes
neurons, synaptic connections that link the neurons, and learning algorithms.
Typically, NN is formed by three types of layers, respectively, called input, hidden
and output layer and each one has several neurons. Each unit in a network gets
“weighted” information through synaptic links from the other connected ones
and returns an output by using an activation function transforming the weighted
sum of input signals (for more details [3]).

In our case the model catches the input data, then it learns the hidden
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the mortality rate (or d,) for the same years)

this context it is slightly different from cano 5 exercise, in a way
that, the test vector has been selge

Thus for sake of clarity, in the € can obtain the following years
for instance1980, 1995, 1970 i € test vector, we can obtain

the following years: 2010 001. Thus the training-test
vectors do not show a time-depe

In order to sele on of hyperparameters for the network, a
preliminary rouy I out. The best combinations, obtained
in this step, a ibration in the forecasting procedure. After
the tuning proce e architectures with six hidden layers. In each
layer, we use five ] ons, furthermore in two layers we employed a
drop out regularizationWitlfa rate of 1%. The Rectified Linear Unit (ReLU)

activation function outperformed the other functions tested for all countries.
During the fitting procedure, we perform two hundred epochs with a batch size
equal to one. In addition, no clear evidence emerged for the influence of other
hyperparameters on the performance.

The figure [I| shows a clear representation of how the model works. It accepts
the values of life expectancy at birth and at age 65 as input. Then it provides
the mortality surface. Furthermore, the model could provide any other desired
demographic measure, such as the age at death distribution.



5 Result

The analysis includes numerical and graphical processing of the goodness of fit.
In particular, we follow the out of sample approach that represents the testing
step in the machine learning field.
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Japan Female, year:1962
Red: Neural Net, Black: Observed
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USA Female, year:2006
Red: Neural Net, Black: Observed
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Figure 5: USA: m,.

Once the motility surface is obtained, we can use smoothing in order to
manage the data noise level. In the figure [6] below we see an example of a
smoothed m, estimation. In the same figure, we also used our model to get the
age at death distribution
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Besides graphical check, we calculate the following goodness of fit measures:

Mean Absolute Error (MAE): Z M, (1)
~ 2
n
Root Mean Square Error (RMSE): \/Z (M.t = i) . (2)
n



Table 1: Performance of DNN the testing set for each country.

Country Female
Awustralia MAE RMSE
Myt 0.175 0.181
Ttaly MAE RMSE
Myt 0.141 0.152
Japan MAE RMSE
Mt 0.126 0.132
USA MAE RMSE
Mgt 0.123 0.131

)

ages. This phenomenon leads to a remarkable drawback a
models since the
fixed structure of the

B. index over time (Lee and Miller, Girosiand {”). Our approach
will be able to overcome this problem assuming 4 alues of mortality
surface are a function (estimated s
forecasting (Nigri et al. 19 J4 vy, at birth and at 65. The
investigation has been perfg roughout the world and by

gate the hidden relationship in
our data. These fe W\ _to provide more accurate forecasting,

In this draft, we provide@movel view in order to forecast mortality (or vital)
rates. Using a combinafion of Deep Neural network and B-spline smoothing
we are able to catch the hidden pattern and the nonlinear relationship between
the summary demographic measures and age period rates. We can consider an
important application in the context of incomplete data such as fertility history
or migration. We also consider further development combining the use of life
expectancy (and lifespan inequality) forecasting model by Nigri et. al 2019 [4] in
order to obtain unobserved data more coherent whit past trend. Thus we obtain
the future mortality surface from the ey and egh forecasted value.
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