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Abstract

Bilateral migration data, summarizing the number of people migrating between each origin and destination,
provide a clearer understanding of migration patterns than summary measures such as net migration. However,
bilateral migration flow data are commonly unavailable, not up to date or provide conflicting accounts of
population change when compared to changes implied in demographic data.

In this paper we introduce an conditional maximisation routine to update bilateral migration data to match
known net migration totals. The routine can also be applied in missing data situations to generate synthetic
bilateral migration flows to match known net migration totals where no reported bilateral data are available.
We illustrate the method using real world data from the United States. The resulting estimates of bilateral
migration flows are demographically consistent with changes in reported population totals, births and deaths
over the period and provide a detailed depiction of contemporary state to state migration patterns.

Background

One of the oldest migration estimation problems is based on estimating bilateral migration flows to match a
set of known total inflows and total outflows. One solution to this problem is based on a spatial interaction
model for the number of migrant in transition from origin i to destination j, during the respective time
interval;

yij = αiβjmij

where yij is the expected number of migrants in transition from origin i to destination j and i, j = 1, 2, . . . , R
for R origins and destinations. The αi and βj parameters relate to the total outflow and inflow from each
origin and destination respectively. The mij factor represents some auxiliary information on migration flows.
This is typically additional data related to migration between the same origins and destinations. Willekens
(1999) noted, in conventional spatial interaction analysis, mij = F (dij) where dij is a measure of distance
between i and j and F (.) is a distance deterrence function. Such distance deterrence functions can come in
different forms, such as F (dij) = d−εij or F (dij) = exp(−εdij), where ε > 0 is a distance sensitivity parameter,
see Sen and Smith (1995), pp. 4. Alternative specifications for mij might be travel costs or past migration
flows.

As described by Willekens (1999), the estimation of parameters in a spatial interaction model can be performed
by re-expressing the spatial interaction model of above in terms of a log-linear model:

log yij = logαi + log βj + logmij ,

where unlike standard log-linear models, no intercept is included, and the final term is commonly referred to
as an offset. The maximum likelihood estimates for the αi and βj parameters of this model can be derived
using an iterative solutions to the partial differentials for the the Poisson distribution function for yij :
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α̂i = ni+∑
j

β̂jmij

and β̂j = n+j∑
i

α̂imij

.

Iterative solutions to these differentials are feasible when the sufficient statistics (ni+ and n+j) are known
and form an Iterative Proportional Fitting Procedure (IPFP)

Adapting Spatial Interaction Model for Known Net Migration Totals

The spatial interaction model above can be adapted to ensure that the net migration totals are the sufficient
statistics of an iterative solution by having only one parameter for each region:

yij = αiα
−1
j mij

This can be expressed as a log-linear model:

log yij = logαi − logαj + logmij

for which the maximum likelihood estimates of α can be derived by considering the probability of observing
nij migrant transitions during a unit interval, given by the Poisson distribution function:

P (Nij = nij) =
y
nij

ij

nij !
exp(−yij).

The likelihood function for Y = {yij , i, j,= 1, . . . , R} given n = {nij , i, j,= 1, . . . , R} migrations, provided
that migrations are independent, is

L(Y; n) = P (N11 = n11, N12 = n12, . . . , NRR = nRR) =
∏
ij

y
nij

ij

nij !
exp(−yij)

Inserting model () into the likelihood function and taking the logarithmic transformation gives the log-
likelihood function:

l(α; n) =
∑
ij

{
nij log(αiα−1

j mij)− αiα−1
j mij − log(nij !)

}
=
∑
i

ni+ log(αi)−
∑
j

n+j log(αj)−
∑
ij

αiα
−1
j mij + c,

where α = {αh, h = 1, . . . , R}, ni+ =
∑
j

nij and n+j =
∑
i

nij are the marginal totals, and

c =
∑
ij

nij log(mij)−
∑
ij

log(nij !).

In order to obtain the estimates of α that maximise this likelihood, we can expand the summations in ()

l(α; n) =n1+ log(α1) + n2+ log(α2) + . . .+ nR+ log(αR)−
n+1 log(α1)− n+2 log(α2)− . . .− n+R log(αR)+
( α1α

−1
1 m11 + α1α

−1
2 m12 + . . . + α1α

−1
R m1R +

α2α
−1
1 m21 + α2α

−1
2 m22 + . . . + α2α

−1
R m2R +

. . .+
αRα

−1
1 mR1 + αRα

−1
2 mR2 + . . . + αRα

−1
R mRR ) +

c.
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We may then obtain the likelihood equations by differentiating with respect to a given αh:

∂l

∂αh
=nh+α

−1
h − n+hα

−1
h +

α−1
1 mh1 + α−1

2 mh2 + . . .+ α−1
R m1R+

α1α
−2
h mh1 + α2α

−2
h mh2 + . . .+ αRα

−2
h m1R,

where terms based on the differential for αhα−1
h mhh in () are dropped. Setting the likelihood equation to

zero, multiplying through by α2
h, and rearranging;

α−1
h (nh+ − n+h) +

∑
g 6=h

α−1
g mhg + α−2

h

∑
g 6=h

αgmgh = 0

α2
h

∑
g 6=h

α−1
g mhg − αh(n+h − nh+)−

∑
g 6=h

αgmgh = 0,

allows us to obtain maximum likelihood estimators of αh using the quadratic equation:

α̂h =
(n+h − nh+)±

√
−(n+h − nh+)2 + 4

∑
g 6=h

α−1
g mhg

∑
g 6=h

αgmgh∑
g 6=h

α−1
g mhg

,

where αh must be the positive root to ensure non-negative migration flow estimates. Note, the sufficient
statistics (nh+, n+h) are unknown in our primary data. However, the difference between these two, n+h−nh+,
is the known net migration total for region h and thus the corresponding parameter can be estimated. Since
equation () is not a closed form expression, a direct estimate of αh cannot be obtained. Instead, an iterative
solution can be used where all initial estimates of α̂(0)

h are set to an arbitrary starting value such as unity.
These are then used to update

α̂h
(t+1) =

(n+h − nh+)±
√
−(n+h − nh+)2 + 4

∑
g 6=h

α−1
g

(t)
mhg

∑
g 6=h

α
(t)
g mgh∑

g 6=h
α−1
g

(t)
mhg

.

This is a conditional maximization of the likelihood function and converges to give estimates of αh. Maximum
likelihood estimates of yij can be obtained using model (). The iterative procedure to estimate α̂h and yij
can undertaken using the cm_net routine in the migest R package Abel (2013).

Applied Example

In the United States, annual state to state origin-destination flow data are available from the American
Community Survey (ACS), Current Population Survey or Inland Revenue Service. Each suffer from various
sources of bias and inconsistencies. In addition, the US Census Bureau publishes annual domestic state net
migration estimates calculated via demographic accounting.

In Figure 1 the domestic state net migration calculated from the ACS and domestic net migration reported
US Census Bureau during 2017 are compared. For a few states there are large discrepancies between the
reported flows. Those in the off-diagonal have differing direction of net migration implied by the net migration
in each data source.

We apply our method to estimate origin-destination flows that match the US Census Bureau reported domestic
net migration, using ACS state to state data as the offset (mij). The resulting flows are shown in the chord
diagram of Figure 2

The differences between the estimates shown in Figure 2 and those from the ACS are relatively minor, as
shown in Figure 3. However, the net migration totals of the estimates match those of the US Census Bureau.
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Figure 1: Scatter plot of domestic state net migration measured by the US Census Bureau and ACS based on
modulus during 2017. Axis based on log-modulus transformation.
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Figure 2: Chord diagram of estimated state to state migration during 2017 with net migration totals matching
those reported by the US Census Bureau. Axes based on units of 100,000 persons migrating.
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Figure 3: Comparison of estimated migration flows and ACS migration flows in 2017.
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Summary

As Rees and Willekens (1986) noted, there are a number of benefits in developing population statistics
that follow a demographic account. First, accounts have served economists well in their national economic
modelling activities. Second, accounts force the analyst to attempt the matching of available data and a
conceptual model. Third, a diverse sets of statistics are brought together in accounts and are subject to
comparison and to checking for consistency. However, the same authors noted that demographic accounting
has had little impact in either national statistical offices or at local or regional levels, where the usual objection
posed is that the preparation of accounts tables is too complex and time-consuming an exercise. In many
developed (and developing countries) these issues still persist.

In this paper we have developed a method to estimate bilateral migration flows that match known net
migration totals. It provides estimated origin-destination migration flows that can form part of a full
demographic account, overcoming some of the likely difficulties in producing consistent detailed migration
data in countries without population registers.
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