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Socioeconomic factors, climate change and malaria prevalence in Sub 

Saharan Africa 
 

Abstract: This project analyzes how malaria prevalence is influenced by socioeconomic factors, 

climate anomalies, deforestation, and access to treatment in Sub Saharan Africa. Biomarkers of 

malaria prevalence, treatment availability and socio-economic data are measured at two points in 

time, from cross sectional, nationally representative biomarkers and social data covering 350 

million people in Sub Saharan Africa. These health data (together with demographic, social and 

economic information) will be further linked to high-resolution precipitation, temperature and 

deforestation information. Spatial regression models will then be employed to analyze the effects 

these covariates have on malaria prevalence.  

The research will advance the understanding of the connections between malaria prevalence and 

socio-economic factors/ access to treatment. While there is a wealth of literature focused on the 

climate- malaria link, there is no large-scale study in which all the most relevant factors (climate, 

land changes, socio-economic characteristics and access to treatment) are studied together on a 

large, nationally representative, scale.    
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Extended abstract 

 

Introduction 

 

Over the past decade significant advances have been achieved in the fight against malaria.  Since 

2010, there has been an 18% decrease in malaria incidence and 28% decrease in mortality 

worldwide. However, the number of malaria cases is still high (219 million in 2017), malaria 

parasites are increasingly resistant to artemisinin (a core compound in the most common 

antimalarial medicine), and malaria mosquitoes have developed insecticide resistance (WHO, 

2019). 90% of malaria cases occur in Sub Saharan Africa and the decrease in incidence is not 

spatially homogeneous as some areas (in particular, highlands in Africa and Asia) have seen an 

increase in the number of cases (Chavez and Koenraadt, 2010). As a vector borne disease, 

malaria is affected both by environmental changes (rainfall, temperature, humidity, land cover) 

and socioeconomic factors. Environmental factors affect the density and development of the 

virus and vector population while the socio economic variables have an influence human 

susceptibility to the disease. 

Figure 1. Malaria in the world 
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A number of studies have explained the spatially fine changes in malaria incidence as 

being a result of large scale variations in the atmosphere (Bouma 2003; Gagnon et al. 2002; 

Kovats et al. 2003), in particular through the changes induced by the El Niño–Southern 

Oscillation (ENSO) phenomenon.  Anopheles gambiae  - the major vector for  Plasmodium 

falciparum in Africa – needs a temperature of 16°C -32°C (61° F - 90° F ) in order to develop 

into an adult and thrive (Jepsonetal. 1947) with small amplitude variations in mosquito  

population between 20°C -26°C (68° F -79° F) (Beck-Johnson et al., 2013). The amount of 

rainfall has been shown to affect the abundance of larval habitats (Koenraadt et al. 2004), while 

rainfall anomalies was shown to influence the mosquitoes density (Lindblade et al. 1999; Chavez 

and Koenraadt, 2010). Humidity – a result of temperature and rainfall – affects the lifespan of 

the mosquito (Clements 1999) but its influence seems to be strongly spatially connected. Within 

African contexts, relative humidity levels were associated with malaria incidence in Burkina 

Faso (Ye et al. 2007) although they were not correlated to vector density  in  Uganda at high 

altitude (Lindblade et al., 2000). Proximity of  water  bodies increases mosquitoes’ densities and , 

as such, malaria incidence (Bøgh  et al., 2007; Lautze  et al., 2007; Oesterholt et al., 2006; Staedke  et 

al., 2003; Minakawa  et  al., 2004)  ). Vegetation creates microhabitats in which conditions are 

better for mosquitoes than in areas without vegetation and, as such, it might increase their 

life span (Clements 1999; Chavez and Koenraadt, 2010). Deforestation reduces shade and 

alters rainfall patterns and “increases surface water availability through the loss of topsoil and 

vegetation root systems that absorb rain water” (Yasuoka and Levins, 2007). In East Africa, 

deforestation has been shown to increase significantly mean temperature and variability which, 

in turn, affect the survival of the malaria vectors (Afrane et al. 2006; Lindblade et al. 2000).  

A comprehensive literature review of the articles published in English between1990-2009 

(Mbaso and Ndlovu, 2011) on the topic of malaria and climate records no study in which also 

accounts for socioeconomic factors relevant to malaria incidence or mortality. Overlooking 

socioeconomic factors is likely due to the data used in prior work; the great majority of data on 

malaria cases come from hospital/clinics data and this data is not generally attached to any 

socioeconomic. However, socioeconomic factors including housing conditions, poverty, 

agricultural development, population movement, and urbanization affect malaria transmission. 

For example, poverty is associated with malaria incidence as : children of the poorest 

households tend to have higher incidence of malaria than do children from more advantaged 
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households (Clarke   et al.  2001). Though socioeconomic conditions like poverty have long been 

considered fundamental causes of disease (Link and Phelan 1995), mechanisms such as 

malnourishment and malnutrition (in particular, lack of vitamin A, zinc, iron, folate, and other 

micronutrients) demonstrate pathways linking poverty and malaria morbidity or mortality 

(Caulfield et al., 2004). Similarly, accesses to health services, high education, and socioeconomic 

development have been shown to decrease malaria incidence in communities around the world 

(Bouma, 2003, Yasuoka et al. 2006; Lindsay and Birley, 2004).  

In this paper, we add to the existing literature by analyzing how climate, 

socioeconomic variables, access to treatment and landscape changes jointly affect malaria 

prevalence in Sub Saharan Africa.  

 

Data and methods 

 

For this research we combine three types of datasets: socio-economic and health datasets, climate 

data and deforestation information. These datasets will be linked through the GPS information.  

We will use spatial regressions and spatial correlations to analyze these connections. 

 

Socio-economic and health datasets 

We use the Demographic and Health Surveys (DHS) to gather the socio-economic and health 

information. The DHS use nationally representative samples of at least 8,000 households and 

implements a standardized questionnaire that can include, for some countries and  in certain 

years,  information on malaria prevalence (through biomarker testing), availability of malaria 

treatment as well as GPS information for the households included in the sample.  Given our 

research interests, we will use the following DHS datasets (the only ones surveys for Sub 

Saharan Africa that contains all the information mentioned above): 

Angola: 2011, 2016  

Burkina Faso: 2014, 2017 

Mali 2010, 2015 

Mozambique 2011, 2015 

Nigeria 2010, 2015 

Rwanda 2013, 2017 



5 
 

Senegal 2008, 2016 

Uganda 2009, 2016 

  DHS employ clustered stratified samples of population: they use the most recent 

available census framework to divide the population into sectors (based on census tracts) and 

then select a representative bi-stratified sample of households from within these areas. This 

results in around 1000 clusters with up to 30 households each; the GPS information made 

available gives the latitude and longitude of the cluster center.  

 

Climate Data 

High density and comprehensive observational networks of meteorological data or high 

spatial resolution gridded data would have facilitated our analyses, but these data are not 

available for all countries of interest. Therefore, in this study we used relatively coarse resolution 

gridded (0.5° by 0.5° latitude and longitude; ~ 53 kms) monthly total precipitation, average 

temperature, and maximum temperature data for 19811981–2018 period from the Climate 

Research Unit1 (CRU TS v.4.03;  Harris, et al., 2014). The gridded dataset is generated from 

monthly observations at meteorological stations covering the global land surface.  CRU data 

have been widely used in a variety of climate and public health related studies (e.g., Karmalkar, 

et al., 2011; Lehmann, et al., 2015; Swain and Hayhoe, 2015; Colón-González, et al., 2018). For 

this analysis, we performed a bilinear interpolation on the original data (0.5° by 0.5° grids) to 

develop a re-gridded CRU database at a resolution of 0.025° by 0.025° latitude and longitude (~ 

3-km).  

In terms of climate measures, we use indicators such as anomalies in monthly 

precipitation, maximum temperature, and average temperature to analyze the impacts of 

temperature and precipitation on malaria prevalence in the study area. We first calculated three 

climate indicators such as anomalies in precipitation, maximum temperature, and average 

temperature using the CRU data corresponding to the months of survey data collection. We then 

overlaid the GPS points on the climate indicator maps and extracted the grid cell values 

corresponding to the GPS points. So only the GPS points (within same month of data collection) 

that fall on the same 3-km grid would have the same climate data. Precipitation anomalies were 

                                                           
1 https://climatedataguide.ucar.edu/climate-data/cru-ts321-gridded-precipitation-and-other-meteorological-variables-
1901  

https://mail.ttu.edu/owa/redir.aspx?C=VaPozDwh6Ct288HZVfa3Ul3zf-Z5c6hJ40ygy0rSj6qgpCwGz9LTCA..&URL=https%3a%2f%2fclimatedataguide.ucar.edu%2fclimate-data%2fcru-ts321-gridded-precipitation-and-other-meteorological-variables-1901
https://mail.ttu.edu/owa/redir.aspx?C=VaPozDwh6Ct288HZVfa3Ul3zf-Z5c6hJ40ygy0rSj6qgpCwGz9LTCA..&URL=https%3a%2f%2fclimatedataguide.ucar.edu%2fclimate-data%2fcru-ts321-gridded-precipitation-and-other-meteorological-variables-1901
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calculated as the current month’s total precipitation minus the average total precipitation for that 

month for a 30-year historical period (1981-2010), divided by the current month’s total 

precipitation. Temperature anomalies were calculated as current month’s maximum and average 

temperatures minus their respective 1981-2010 monthly averages. We then calculated the climate 

indicators at the cluster level 

 

Deforestation data 

 We will use a high-resolution global forest change (GFC) dataset to derive deforestation 

information for the study area and time period (Hansen et al. 2013). GFC characterizes forest 

cover loss, defined as a complete removal of tree stands, at 0.00025° × 0.00025° spatial 

resolution (~28 × 28 meters at the equator) for every year from 2001 to 2018. This satellite-based 

high-resolution dataset is globally consistent and thereby allows local-scale analysis across the 

study area. For each centroid of the clustered DHS sample, we will create a buffer circle around 

the centroid with a 10-km radius. We will match the exact beginning and ending years of the 

DHS data for each country and compute the total area and percentage of forest loss within each 

buffer.  

 

Preliminary results 

 

One of the most debated topics nowadays is whether or not climate change is the main factor 

that accounts for the changes in the distribution of malaria cases as the incidence is increasing 

in the highlands while decreasing everywhere else. Our preliminary results suggest that, while 

changes in climate made possible the spread of the Anopheles gambiae at higher altitudes than 

before, socioeconomic factors (high poverty and restricted access to treatment in the highlands 

of Africa) play a significant role as well. This suggests that when malaria evolution is modeled 

within the context of climate change, there are direct effects that the Shared Socio Economic 

Pathway have on malaria and they need to be taken into account. 
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