
“Completing the life course." Estimating the impact of hypothetical population-
policies on cohort life expectancy with the g-formula:  

a worked example using hypertension and mortality in South Africa 
 

EPC Extended Abstract
 

Maarten J. Bijlsma1, Alpha Oumar Diallo2, Nikkil Sudharsanan3 
 

1Laboratory of Population Health, Max Planck Institute for Demographic Research 
2Department of Epidemiology, University of North Carolina at Chapel Hill 

3Heidelberg Institute of Global Health, Heidelberg University 
 
Abstract 
A key part of health-decision making is estimating how proposed interventions will affect the 
mortality of future cohorts. These types of questions are typically answered using modeling studies 
that draw estimates from multiple sources to simulate the life course of individuals. Although these 
studies are very common and influential, they have three important limitations, especially for 
developing countries: (1) by drawing estimates from multiple sources, they assume that the effect of 
an intervention on mortality from one population can be transported to other countries and 
populations; (2) they generally require comprehensive mortality registration information, which is 
often unattainable in developing countries; and (3) they make strong stationarity assumptions and 
assume that period mortality and health conditions accurately represent the dynamic experience of an 
aging cohort of individuals. In this paper, we propose an alternative approach that overcomes some 
of these limitations using longitudinal survey data and the parametric g-formula -- an epidemiological 
dynamic causal inference model. Specifically, we first estimate mortality and risk factor transitions 
as a function of age and potential confounders from a real cohort of individuals. We then use this 
information to project the covariate trajectories of the cohort beyond ages observed in the data and 
then complete their life course by estimating future mortality as a function of these covariate 
trajectories. This allows us to estimate the impact of population-policies on cohort life expectancies 
without having to transport estimates from one context to another while also relaxing stationarity 
assumptions by incorporating projected cohort covariate trajectories into future predictions of 
mortality. We describe and demonstrate this approach using a worked example of blood pressure 
control in South Africa.  
 
 
 
 
 
 
 
 



Introduction 
 
A key part of health-decision making is estimating and comparing how different interventions might 

affect the health of populations. For researchers and policy makers seeking to improve longevity, this 

translates into knowing how proposed interventions will affect the mortality of cohorts that will 

ultimately receive the interventions. These types of questions are extremely challenging to answer 

with traditional policy evaluation designs such as randomized control trials (RCTs) because they 

would require following cohorts until every member dies and somehow ensuring compliance to the 

intervention across this entire period. For this reason, questions on the cohort mortality impact of 

interventions are typically answered using modeling studies that simulate the life course of 

individuals (1,2). Researchers usually simulate several policy scenarios and compare cohort mortality 

across scenarios; for example, researchers may compare a policy that is administered to all individuals 

versus one administered to high-risk individuals (3). This information is then often linked to cost or 

effort data to determine which policy scenario is most cost-effective or feasible (4,5). 

 Health policy models are generally built using the following procedure (1,6,7). First an initial 

cohort of individuals at some starting age is drawn. These individuals are then aged forward based on 

mortality rates drawn from national death statistics and information on the age-specific prevalence of 

the intervention target (e.g. blood pressure [BP] if the policy was aimed at estimating the effect of BP 

treatments). This cohort usually forms the “natural course” comparison group since the main 

intervention target (in our example BP) is not changed in any way. Researchers then form an 

intervention cohort where the policy of interest is applied. The effect of the policy on mortality in this 

cohort is simulated based on effect sizes drawn from clinical trials or long running cohort data. 

 For example, suppose we were interested in the effect of treating systolic BP down to 125 

mmHg among those aged 30 and above on cohort survival. We would begin by generating a 



population starting at age 30. Next we would use national death statistics to create two sources of 

mortality: background mortality that is not affected by BP and “BP-amenable” mortality. We would 

also draw information on the age-specific prevalence of BP from a population survey. We would then 

simulate these 30-year olds forward using the age-specific mortality rates and the age-specific 

information on BP prevalence. For our intervention cohort we would repeat this process, this time 

making sure that individuals have a systolic BP that never exceeds 125 mmHg. At every age, we 

would estimate the effect of this BP reduction on survival by reducing BP-amenable mortality by an 

amount based on clinical trial data on the effect of BP reductions on mortality. This cohort would 

then be survived forward like the natural course cohort and we would compare cohort life expectancy 

between the natural course and intervention scenarios. 

 While these types of studies are extremely common and very influential, they have three 

important limitations -- two of which are especially pronounced for developing country contexts. 

First, these studies assume that the effect of the policy on mortality drawn from clinical trials and 

cohort studies from one context accurately represent the mortality reductions that would occur at the 

population level in other contexts. This assumption is known as transportability and is particularly 

strong when clinical trial or cohort data from high-income countries is used to evaluate policy 

scenarios in low- and middle-income countries (8). Second, estimating the effect of the policy on 

mortality for the simulated cohorts usually involves partitioning mortality into background and 

intervention-amenable mortality. This requires cause-of-death data or at a minimum comprehensive 

mortality registration information, both of which may be unattainable in developing countries (9). 

Lastly, these models make strong stationarity assumptions: information on mortality and risk-factor 

progressions over age are drawn from period data sources, like national life tables and population 

surveys, but then used to simulate cohort life courses. This assumes that mortality and risk factor 



dynamics have been stationary over time and that the cross-sectional pattern accurately represents the 

dynamic experience of a real aging cohort of individuals (10). 

 A small literature has emerged that proposes using the parametric g-formula, an 

epidemiological simulation method (11), as an alternative to standard health policy modeling to 

overcome some of these limitations (12). First, the parametric g-formula approach involves estimating 

the effect of the intervention on mortality using data from the target population themselves. This 

removes the need to transport an effect from another context.1 Second, the g-formula approach 

bypasses the need for vital registration data by using micro-level data with mortality follow-up 

information. Lastly, the g-formula approach is based on cohort, not cross-sectional, data and thus 

does not involve making stationarity assumptions. The fundamental limitation to the g-formula 

approach as it is often applied to mortality questions (13), however, is that it is limited in years of 

follow up by the number of survey waves in the data. Therefore, in order to be an alternative to health 

policy modeling, the researcher would need cohort data with regular and repeated measurements that 

span the entire life course of surveyed individuals. This is a requirement that cannot currently be 

realistically met, to the best of our knowledge, with data from any context. 

The g-formula approach addresses the transportability and stationarity issues of typical health 

policy modeling but has unrealistic data assumptions when cohort life expectancies are the ultimate 

outcome of interest. In this paper, we propose and demonstrate an extension of the parametric g-

formula that addresses this key data limitation by combining it with aspects of traditional health policy 

and demographic simulation approaches. Specifically, we first estimate mortality and risk factor 

transitions as a function of age from a real cohort of individuals. We then use this information to 

project the covariate trajectories of the cohort beyond ages observed in the data and then complete 

                                                             
1 This effect, however, is observationally estimated, leading to a tradeoff between bias due to unobserved confounding 
and bias due to transportability. We discuss this issue in greater detail later in the paper. 



their life course by estimating future mortality as a function of these covariate trajectories. This allows 

us to combine the advantages of health policy modeling (can cover the entire life course of a cohort 

under both natural course and intervention scenarios) with the advantages of the g-formula (we can 

avoid the transportability assumption and relax the stationarity assumption by incorporating 

information on cohort covariate trajectories into future predictions of mortality). In the following 

sections, we describe this approach and provide a step-by-step worked example that estimates the 

effect of population-policies to improve blood pressure control on cohort life expectancies using data 

from South Africa. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Concepts and intuition behind the approach 
 
We describe our approach through the following motivating example: How does cohort life 

expectancy for 30-year olds in South Africa change if there is a population-policy to keep their 

systolic BP under control (≤ 125 mmHg) for the rest of their lives? 

 
Target trial 

To begin answering this question, it is useful to describe the hypothetical randomized control trial, 

that if possible to run, would provide us with an answer to our motivating question (this is sometimes 

known as the “target trial”) (14). First, we would select a population-representative cohort of South 

African 30-year olds. We would then randomly split this cohort into an intervention and control group. 

For the intervention group, we would, through a combination of medicines and lifestyle changes, 

ensure that systolic BP never exceeds 125 mmHg for the rest of the cohort members’ lives. For the 

control group, we would let them age as is - this means that some individuals may independently take 

up medicine and achieve full control, others may achieve partial control or control for only a part of 

their lives, and others may never be able to control their BP (this is sometimes referred to as the 

“current best practices” cohort). We would then follow these two cohorts until every individual dies 

and estimate the effect of the policy on cohort life expectancy by a simple comparison of the average 

age of death between the intervention and control cohorts. 

 

Real data and the parametric g-formula 

In reality, this type of trial is nearly impossible to run. Our goal, therefore, is to try and use 

longitudinal survey data to mimic the target trial as closely as possible. Suppose, for example, we had 

data on adults from a longitudinal population-representative survey collected in South Africa. These 

types of data sources are common but present a fundamental challenge for health policy modeling: 



we only have data on any given individual for the limited window of time that the survey has been 

running.  

Our solution to this issue is to extrapolate the parametric g-formula, a method for estimating 

dynamic causal effects in epidemiology, to simulate our target trial intervention and control cohorts. 

The core principle behind the parametric g-formula is to first estimate relationships from empirical 

and data then simulate the life course of cohorts based on the longitudinal relationships found in the 

data. Typically, however, this is only done for the number of waves present in the actual survey 

(13,15). What we propose is to project the cohort beyond the years found in the data. For example, 

suppose our survey data covered a 10 year period. Therefore, for a 30-year old, the data only tells us 

what would happen until that individual is 40. To complete this individual’s life course, we project 

the empirical relationships found in the data beyond age 40, predicting how that individual’s covariate 

and mortality trajectories would evolve if they were observed beyond age 40. This approach is similar 

in some ways to the synthetic cohort approaches common in demography and health policy but is 

fundamentally different in one crucial way. Rather than just assuming that a 30-year old in the data 

will have the mortality experience at age 40 of a 40-year old in the data (the stationarity assumption), 

we actually try and estimate how that 30-year old would look when they are 40 in terms of their 

covariates, and then predict what mortality at that age would be given those new covariate values. 

This approach allows us to use longitudinal survey data to recreate the target trial we described 

previously in two steps. We do this by applying the parametric g-formula in two ways. First, we 

simulate a cohort that follow the observed aging patterns in the empirical data. Since we are not 

simulating any type of intervention, this cohort forms the control group of the target trial. Next, we 

simulate a second cohort where, rather than allowing blood pressure to evolve among individuals in 

the way it does in the data, we constrain BP to never exceed 125 mmHg. By holding BP at a controlled 



level, we also end up affecting the mortality rates experienced by the cohort. This new cohort, because 

they have “aged” under this BP restriction, form our treatment group. Lastly, just like our target trial, 

we then evaluate the impact of the intervention on cohort life expectancy by comparing the average 

age at death across the control and intervention cohorts. 

In the following section, we provide a step-by-step worked example of this process using data 

from the South African National Income Dynamics Study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Worked example 

Data 

Data for this illustrative example are from the 2008-2017 of the South African National Income 

Dynamics Survey (NIDS) (16). The NIDS is a nationally representative survey of individuals of all 

ages and contains extensive demographic, economic, and health information. To keep our example 

simple, we consider just 7 variables from the NIDS: age (in years), sex (male/female), measured mean 

systolic blood pressure (based on the average of 2 measurements taken with an electronic blood 

pressure monitor), measured body mass index (based on measured height and weight), current 

smoking status (0/1), schooling (no schooling, grade school, higher education degree), and whether 

an individual died between survey waves (0/1).2 To be consistent with our target trial, we focus on 

adults ages 30 and above and for the sake of the worked example limit our sample to individuals who 

have non-missing data for every wave of data that they are alive in.   

Before conducting our analyses, we first convert the data to a person-wave format with 

observations for every wave that an individual is observed in. For each person-wave, we classify the 

mortality variable as 0 if the individual survived to the subsequent wave or 1 if they died before the 

subsequent wave of data was collected. Our total sample consists of 4,724 observations corresponding 

to 18,909 person-waves of data. 

 

 

 

 

 

                                                             
2 Schooling and sex are the only time-invariant variables we consider. 



Estimating the relationships in the data 

Our first step is to use parametric models to estimate how mortality evolves over age. This model 

forms the basis of the simulation by providing a way of estimating the probability of mortality at any 

given age. We may be tempted to fit the following simple model (shown for just one sex): 

!"#$%('[)|+]) = /0 + (/2 ∗ +) 

where D is the 0/1 indicator of whether an individual died between waves and A is age. This is 

problematic, however, because from a causal perspective, this model assumes that there are no 

confounders of the age-mortality relationship (Figure 1): 

 
Figure 1. Directed Acyclic Graph (DAG) of the effect of age (A) on mortality (M). 
 

 The problem with this assumption is that since our data are from a specific period (2008-

2017), individuals in the data at different ages come from multiple birth cohorts. Therefore, the 

model’s estimate of what mortality for a 30-year old would be when they reach age 40 is effectively 

estimated from the mortality experience of 40-year olds in that same period (similar to the synthetic 

cohort approach). If there were no differences across birth cohorts in characteristics relevant to 

mortality (the stationarity assumption), this would not actually be a problem, and could be represented 

by the following causal diagram (Figure 2):  

 



 
 
Figure 2. Directed Acyclic Graph (DAG) of the effect of age (A) on mortality (M), including birth 
cohort (C). 
 

 Here C is a set of indicators for birth cohort. The causal diagram above appears to assume 

that differences in characteristics across cohort do not affect mortality, and therefore that cohort is 

not a common cause of both age and mortality and hence does not bias this relationship. However, in 

reality, there are likely to be several differences across cohorts that are also related to mortality. For 

our simplified example, we will assume that there are just four mortality-relevant characteristics that 

vary across cohorts, systolic BP (B), BMI (represented by W for weight), tobacco use (T), and 

schooling (S) (Figure 3): 

 
Figure 3. Directed Acyclic Graph (DAG) of the effects of age (A) and birth cohort (C) on mortality, 
via characteristics of birth cohort, i.e. systolic blood pressure (B), BMI (W), tobacco use (T) and 
schooling (S). 
 



 For now we will also assume that there is no direct effect of age on any of these variables (an 

assumption we will soon remove). This diagram reveals that the relationship between age and 

mortality estimated from the previous model is confounded by differences in schooling, tobacco use, 

BMI, and BP across ages that are due to the fact that individuals at different ages in the data come 

from different birth cohorts. One way to address this confounding is to include these variables in our 

model3: 

!"#$%('[)|+, 5,6, 7, 8]) = 	/0 + (/2 ∗ +) + (/: ∗ 5) + (/; ∗ 6) + (/< ∗ 7) + (/= ∗ 8) 
 
The main issue with this model and causal structure, however, is that we are assuming that there is 

no effect of age on any of the intermediary variables. In reality, there is a relationship between age 

and tobacco use, systolic BP, and BMI that is not just driven by differences across cohorts (Figure 

4 shows this relationship for systolic BP and BMI).

                                                             
3 A large literature in demography, sociology, epidemiology and statistics has worked on age-period-cohort models, 
with the fundamental problem that it is not possible to simultaneously estimate the role of all three since Age = Period - 
Cohort. One alternative that has been proposed is to examine age, period, or cohort effects not through the use of 
indicator variables for these variables but by modeling proxies for at least one of the age, period or cohort variables (17–
19). Our approach effectively takes this strategy, modeling the “descendants” of cohort, such as smoking and obesity. In 
our case, this allows a transparent solution to the APC problem, but additional it allows us to directly vary these 
characteristics to form different counterfactual estimates - which is needed for our approach (described later on) and 
would not be possible if these effects were captured as part of a cohort indicator. 



 

 

Figure 4. Age-patterns of systolic blood pressure and BMI by sex, adults ages 30+, National Income Dynamics Study, 2008-2017. 
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Therefore, a more realistic causal structure might be (Figure 5):  

 
Figure 5. Directed Acyclic Graph (DAG) of the effects of age (A) and birth cohort (C) on mortality, 
via characteristics of age and birth cohort, i.e. systolic blood pressure (B), BMI (W), tobacco use 
(T) and schooling (S). 
 

 We now have an issue. Tobacco use, BMI, and systolic BP are now both confounders and 

mediators of the age - mortality relationship. This means that a regression that simply includes these 

variables as controls would result in incorrect estimates of mortality rates by age for any given birth 

cohort since we have “controlled away” the part of the direct effect of age on mortality that runs 

through tobacco use, BMI, and blood pressure. Said another way, the model would predict how 

mortality changes over age, net of the effect of age on tobacco use, BMI, and systolic BP, and thus 

would not represent how the actual cohort ages because in reality, these three characteristics do 

change over age. The parametric g-formula provides a solution to this problem by not just modeling 

the relationship between mortality and age, but also age and every variable it may affect (the time or 

age-varying variables)4,5:  

                                                             
4 Since our data come from survey waves separated by two years, the mortality model is predicting the two-year 
probability of death while the other models are predicting the two-year change in each variable. 
5 We have included lagged terms in this model to indicate that the value of any age-varying variable at a given age is 
also related to its value at the previous age. 



!"#$%('[)*+,|.*, 0*,1*,2*, 3]) = 	89 + (8; ∗ .*) + (8, ∗ 0*) + (8= ∗ 1*) + (8> ∗ 2*) + (8? ∗ 3) 
 

'[0*+,|.*,0*,1*,2*, 3] = @9 + (@; ∗ .*) + (@, ∗ 0*) + (@= ∗1*) + (@> ∗ 2*) + (@? ∗ 3) 
 

'[1*+,|.*,0*,1*, 2*, 3] = A9 + (A; ∗ .*) + (A, ∗ 0*) + (A= ∗ 1*) + (A> ∗ 2*) + (A? ∗ 3) 
 

!"#$%('[2*+,|.*,0*,1*,2*, 3]) = 	 B9 + (B; ∗ .*) + (B, ∗ 0*) + (B= ∗1*) + (B> ∗ 2*) + (B? ∗ 3) 
 
This set of models can be represented by our final causal diagram (Figure 6): 

 

Figure 6. Cross-lagged DAG showing the relationship between the time-varying variables. 
Mortality (M) is measured between the waves. Age and Schooling are not shown for simplicity: 
they affect all time-varying variables. The time varying variables are systolic blood pressure (B), 
BMI (W), and tobacco use (T). 
 
 Under this system, we estimate mortality not based on a single model but on a set of models 

that feed into one another in an order that preserves the relationship between age and the intermediary 

variables while also controlling for differences in these variables that are due to cohort effects. We 

are now ready for our first step: 

Step 1: Estimate relationships in the data based on the set of models corresponding to the causal 

structure in Figure 6 (regression results are presented in the first panel of Figure 7). 

 

 



Creating the natural course control cohort 

After fitting models to capture the relationships in the empirical data, the next step is to simulate the 

control cohort of the target trial. Our goal in this step is to estimate how long the current cohort of 30-

year olds will live on average under the natural course or status quo scenario where no new BP 

intervention is introduced. We describe this approach algorithmically here, bringing us to step 2: 

Step 2: Simulate the natural course cohort under the causal structure estimated as part of step 1. 

1. Create a dataset with a large number of pseudo-30-year olds drawn from the original data 

(for this example, we will draw 3000 individuals). By drawing these individuals from the 

original data, our pseudo-cohort has the baseline covariate distribution -- and covariance 

between these covariates -- found in the empirical data. 

2. Now, for each 30-year old, estimate their probability of surviving to age 32 (since the data 

correspond to 2-year survival probabilities) given their covariate values by inputting their 

covariate values into the mortality regression equation. 

3. Draw a 0/1 value from this probability for each individual (based on a binomial distribution) 

to determine which individuals survived and which did not. 

4. For individuals that died (drew a D = 1), stop the simulation at this point. 

5. For individuals that survived (drew a D=0): 

a. Deterministically update age to 32 and carry forward the values of the time/age-

invariant covariates. 

b. Estimate the distributional parameters (mean and standard deviation for normal 

variables and probability for binomial variables) of each of the time/age-varying 

covariates for each individual when they are 32 by plugging their covariate 

information into the tobacco, BMI, and sys BP regression equations. 



c. Predict values for the time-varying covariates for each individual when they are 32 

by drawing from distributions with the parameters estimated in the previous step. We 

now have a fully updated set of values for this cohort at age 32. 

6. Repeat this process until every member of the cohort “dies.” 

We demonstrate this process for the age 30 to 32 transition for a hypothetical member of the natural 

course cohort in Figure 7.  



 

Figure 7: Flowchart demonstrating the parametric g-formula simulation process for the 30-32 
transition for one hypothetical male cohort member. 



Creating the intervention cohort 

The next step is to simulate the intervention cohort of the target trial. Our aim is to estimate how long 

the current cohort of 30-year olds will live on average in a world where their blood pressure is 

controlled such that it never exceeds 125 mmHg. This process is similar to the natural course 

simulation with the main difference being that we need to constrain blood pressure to never increase 

above 125 mmHg. 

Step 3: Simulate the intervention cohort under the causal structure (Figure 6) AND the specified 

intervention scenario 

1. Create a dataset with a large number of pseudo-30-year olds drawn from the original data (for 

this example, we will draw 3000 individuals). By drawing these individuals from the original 

data, our pseudo-cohort has the baseline covariate distribution -- and covariance between these 

covariates -- found in the empirical data. 

2. Before predicting survival, set BP for all individuals above 125 mmHg down to 125. 

3. Now, for each 30-year old, estimate their probability of surviving to age 32 given their 

covariate values by inputting their covariate values into the mortality regression equation. 

4. Draw a 0/1 value from this probability for each individual to determine which individuals 

survived and which did not. 

5. For individuals that died (drew a D = 1), stop the simulation at this point. 

6. For individuals that survived (drew a D=0): 

a. Deterministically update age to 32 and carry forward the values of the time/age-

invariant covariates. 



b. Estimate the distributional parameters of each of the time/age-varying covariates for 

each individual when they are 32 by plugging their covariate information into the 

tobacco, BMI, and sys BP regression equations. 

c. Predict values for the time-varying covariates for each individual when they are 32 by 

drawing from distributions with the parameters estimated in the previous step. 

d. As before, replace BP for all individuals with an updated BP above 125 mmHg down 

to 125 mmHg. We now have a fully updated set of values for this cohort at age 32. 

7. We then repeat this process until every member of the cohort “dies.” 

 
Estimating the impact of the population-policy on cohort survival 
 
At the end of this procedure we have effectively simulated our target trial. The natural course or 

control cohort of the target trial is represented by the cohort of individuals for whom we did not 

manipulate their BP and the intervention cohort are represented by the cohort of individuals that we 

held at a maximum BP of 125 mmHg for their entire life course. This leads to the last step: 

Step 4: Compare the natural course and intervention cohorts. 

 To compare the population-level effect of this intervention on cohort life expectancy at age 

30, we now directly compare the mean age at death across the two pseudo populations (Table 1).  

 

 

 

 

 

 



Table 1: Comparison of g-formula estimated cohort life expectancy for South African 30-year 
olds between the natural course and intervention (systolic BP never exceeds 125 mmHg) 
scenarios. 
 

Natural course Intervention 

Male 53.9 53.5 

Female 65.3 64.1 
 
In this example, we do not find evidence that controlling blood pressure across the life course  does 

not have a beneficial impact on cohort life expectancy for 30-year olds in South Africa (these results 

are from preliminary analyses and should be interpreted with caution).  

 Beyond just the cohort life expectancy, we can also compare the survival curves between the 

two cohorts to determine the impact of the intervention on death distributions (Figure 8): 

 

 

 



 

Figure 8: Comparison of Kaplan-Meyer survival curves for South African 30-year olds between the 
natural course and intervention (systolic BP never exceeds 125 mmHg). 
 
 The survival curves reveal that there may be some benefits to BP control in the advanced ages 

that is not being reflected in the measures of life expectancy. 

 
  
Next Steps  
 
We plan to complete the following additional steps over the next several months 

1. We will include a section on model diagnostics, focusing on e.g. making sure the predicted 

covariate trajectories stay within realistic ranges and the extent to which the model correctly 

captures the observed data. 

2. We will include a discussion on the estimation of confidence intervals and correcting for the 

Monte Carlo error introduced by drawing discrete values from distributions. 

3. We are working on and will include a detailed section on causal inference assumptions as 

they relate to this approach. Specifically, we will discuss the so-called consistency and 



exchangeability assumptions, have a deeper discussion on transportability, and how this 

approach should be interpreted in light of these assumptions. 
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