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Summary.Stochastic mortality models have a wide range of applications. They are particularly
important for analysing Chinese mortality, which is subject to rapid and uncertain changes.
However, owing to data-related problems, stochastic modelling of Chinese mortality has not
been given adequate attention. We attempt to use a Bayesian approach to model the evolution
of Chinese mortality over time, taking into account all of the problems associated with the data
set.We build on the Gaussian state space formulation of the Lee–Carter model, introducing new
features to handle the missing data points, to acknowledge the fact that the data are obtained
from different sources and to mitigate the erratic behaviour of the parameter estimates that
arises from the data limitations. The approach proposed yields stochastic mortality forecasts
that are in line with both the trend and the variation of the historical observations.We further use
simulated pseudodata sets with resembling limitations to validate the approach. The validation
result confirms our approach’s success in dealing with the limitations of the Chinese mortality
data.

Keywords: Lee–Carter model; Multiple imputation; Sampling uncertainty; Sequential Kalman
filter

1. Introduction

Since the reform and opening-up policy was implemented, China has made great strides in
improving longevity. According to the World Bank, the life expectancy at birth of the unisex
population of China has increased from 65.5 years in 1978 (when the reform and opening-up
began) to 76.0 years in 2015, representing an average increase of 2.8 years per decade. The rising
trend in life expectancy is welcomed by most people in the country where the pursuit of longevity
is strongly embedded in the culture, but the uncertainty about how the trend may continue poses
huge challenges to the government and many others.

Fuelled by the infamous one-child policy, improved longevity has accelerated the aging of the
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Chinese population, pushing China to the Lewis turning point (Lewis, 2013) at which labour
demand outgrows labour supply. From a macroeconomic standpoint, the evolution of the trend
in life expectancy affects the timing of this turning point, which in turn influences how much
longer China can enjoy its ‘demographic dividends’ (output and other economic gains) resulting
from a large proportion of the total population being in the working-age group (Cai, 2010; Peng,
2011). Further, as China is the most populous country in the world, its demographic transition
has a strong influence on the supply of (low cost) labour and hence affordable consumer goods
from a global perspective.

As outlined in the 1997 State Council Document 26, a significant part of the urban pension
system in China is a defined benefit public plan, which comprises a pay as you go portion
financed by employer contributions equal to 20% of wages plus a funded portion supported by
employee contributions equal to 8% of wages. According to the Ministry of Human Resources
and Social Security, this public plan had assets of ––Y3993:7 billion at 2013 year end. Although
this amount seems large, whether it is sufficient to cover the promised benefits depends very
much on how mortality at pensionable ages changes. A faster-than-expected improvement in
longevity may necessitate an increase in contribution rates in the future.

In the private sector, annuity products offering lifetime incomes have become increasingly
popular in China, as evidenced by the remarkable increase in the total annuity benefit payout
from ––Y14:0 billion in 2010 to ––Y21:5 billion in 2012 (China Insurance Regulatory Commission,
2011, 2013). The uncertainty surrounding the evolution of mortality affects systematically all
life annuities that are sold in China and, in extreme circumstances, may result in a systemic
failure of the Chinese insurance industry (Basel Committee on Banking Supervision, 2013).
Recently, the Organisation for Economic Co-operation and Development (2014) has advocated
using mortality-linked derivatives to manage the risk, but this solution requires both insurers
and capital market investors to have a better understanding of the uncertainty surrounding the
trend in life expectancy.

Policy makers and risk managers can be better prepared for these demographic headwinds
with the aid of stochastic mortality models, which produce a best estimate forecast of future
mortality and a range of possible deviations from the best estimate forecast. Although its prac-
tical relevance is clear, the development of stochastic mortality models for China has not been
given much attention. Many of the existing studies of Chinese mortality, including those con-
ducted by Banister and Hill (2004), Zhao (2012) and Zhao et al. (2013), focus primarily on
(deterministically) trending past observations. Only a handful of attempts have been made to
build stochastic mortality models for China, and, as explained later in this section, they are
subject to some significant limitations.

We believe that the lack of studies of the stochastic modelling of Chinese mortality is due
mainly to several data-related problems, which we now summarize. First, age- and gender-
specific mortality data (death and exposure counts) for the population of China are not available
for the pre-1981 period, leaving researchers with a rather short series of data to work with.
Second, within the 1981–2014 period (the data series ends in 2014), a few years of data are either
partially or completely missing, so that the already short data series is not continuous. Third,
for a number of age–time cells (e.g. age 7 years, 2008, males) in the data set, exposure counts
are provided but no death count is reported. Fourth, the source of data is inhomogeneous such
that some data (those for 1981, 1989, 2000 and 2010) are obtained from nationwide censuses,
whereas the rest are obtained from surveys of a fraction (1% or 0.1%) of the national population.
As a consequence, the variation in the observed death rates is far from being constant.

Given the unique properties of the available data, developing stochastic mortality models for
China is not only a practically relevant problem but also a methodological challenge. The goal
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of this paper is to build a stochastic mortality model for China with all of these properties being
accounted for. In particular, we believe that the model should meet the following three criteria.

(a) Criterion 1: the model should exploit as much information as possible from the data. Given
that mortality projections are often made decades into the future and that the data series
is quite short (34 years), none of the available data should be discarded. That said, the
discontinuities in the data series (arising from the missing data) should be taken into
account when estimating the model.

(b) Criterion 2: the model should provide appropriate provisions for uncertainty. Owing to the
limited availability of data, parameter uncertainty tends to be significant and hence must
be included in the resulting measures of forecast uncertainty. In particular, the additional
parameter uncertainty arising from missing data should be incorporated during the course
of estimation. Furthermore, although the survey data should be included, the fact that
they are subject to additional sampling uncertainty must be acknowledged in the model
structure.

(c) Criterion 3: the model should be parsimonious and yield biologically reasonable projections.
Owing again to the limited availability of data, we prefer parsimonious models to so-
phisticated models. For instance, given only 34 years of data, at best we can only observe
approximately 30% of a birth cohort (let alone the discontinuities in the observations aris-
ing from missing data), and hence it is difficult to justify using models with cohort effects
such as the Renshaw–Haberman model (Renshaw and Haberman, 2006). Furthermore, as
we aim to estimate the model to the full age range of 0–99 years, the model should be able
to capture the fall and rise in mortality with age during childhood and adulthood years
respectively. For this reason, we do not consider models such as the Cairns–Blake–Dowd
model (Cairns et al., 2006), which are applicable only to a restricted age range.

We now review the previous attempts to model the Chinese mortality data set, and we explain
why they do not satisfy all of the criteria that we set out. For convenience of exposition, we
divide the previous attempts into three broad categories.

The first category includes methods based on a subset of the available data in which there are
no missing values. Methods that fall into this category include the pioneering work of Li et al.
(2004), who estimated the Lee–Carter model (Lee and Carter, 1992) by using three years of
complete mortality data that were obtained from nationwide censuses (those for 1989, 2000 and
2010). Despite being quite straightforward to implement, this approach does not satisfy criterion
1, because it completely disregards the survey data, which contain valuable information about
the population (Lavely and Mason, 2006). In principle, the method that was proposed by Li
et al. (2004) can be extended to incorporate the survey data (whereby some death counts are not
reported) by using weighted least squares with a zero weight being assigned to the age–time cells
with no reported death count (Wilmoth, 1993), but such an extension does not acknowledge the
fact that the survey data are subject to greater sampling uncertainty. Furthermore, the work of
Li et al. (2004) takes no account of parameter uncertainty and therefore does not meet criterion
2. This category of methods has been considered by other researchers including Jiang et al.
(2013), who also used three years of census data, Huang and Browne (2017), who considered
only the data from 1997 to 2011, and Wang and Huang (2011), who used only the data from
1994 to 2008. Their contributions also do not meet criterion 1.

The second category encompasses methods in which the missing values are filled with a single
collection of proxies. This category is exemplified by the work of Ping et al. (2013), who fitted
a multiple linear regression to the available data and then filled the missing values with the
expected values implied by the fitted regression to obtain a single ‘complete’ data set. This
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method fails to meet criterion 2, as it does not capture parameter uncertainty including the
additional uncertainty that arises from the missing data. In part because of the understatement
of uncertainty, Schafer and Graham (2002) argued that ad hoc methods such as that of Ping
et al. (2013) may ‘do more harm than good’. It is noteworthy that Ping et al. (2013) estimated
their model with a two-stage approach, in which a singular value decomposition is applied to the
‘complete’ data set to obtain an estimate of the structural parameters, and then a random walk
with drift is estimated to the time-varying indices for forecasting. Such a two-stage estimation
approach for estimating stochastic mortality models has been criticized heavily by researchers
including Leng and Peng (2016), who pointed out its inference pitfalls, and Czado et al. (2005),
who asserted that it may lead to incoherence.

The third category consists of methods that borrow information from the historical mortality
experience of other populations. One example is the contribution by Li (2014), who framed the
method that was proposed by Li et al. (2004) in a Bayesian setting that allows the resulting
mortality forecasts to be influenced by the information from another population. Specifically,
Li (2014) adjusted the prior distribution of the volatility parameter in the random walk for
the time-varying index in such a way that the resulting ‘volatility-to-drift’ ratio lines up with
that of the reference population. Although this extension may yield more reasonable prediction
intervals, it still retains some of the limitations of the original work of Li et al. (2004) (e.g.
not satisfying criterion 1). Another example is the work of Li, Reuser, Kraus and Alho (2009),
who developed a stochastic population forecast (which involves a stochastic mortality forecast)
for China by using demographic information from European countries. The biggest problem
with this category of methods is that it is difficult to justify why the demographic information
of another population should (and can) be borrowed. This problem is particularly relevant
to the modelling work for China, which has a distinct history of public health and economic
development.

In this paper, we adopt a Bayesian approach to model stochastically the evolution of Chinese
mortality. Bayesian multiple imputation is used to handle the discontinuities in the data set, so
that all of the available data can be incorporated in the model, and therefore criterion 1 can
be met. With Gibbs sampling, the approach proposed yields a joint posterior distribution of
all the model parameters, which enables the user to gauge holistically the level of parameter
uncertainty including the extra portion that arises from the missing data, so that criterion 2
can be satisfied. Although several Bayesian approaches to mortality forecasting are available
(Czado et al., 2005; Pedroza, 2006; Kogure et al., 2009; Cairns et al., 2011; Li, 2014; Girosi and
King, 2008), we choose to follow the framework of Pedroza (2006) for two reasons:

(a) Pedroza’s work is built on the Lee–Carter model, which appears to meet criterion 3 as it
is relatively parsimonious compared with other models that are applicable to the full age
range of 0–99 years;

(b) its Gaussian state space specification facilitates efficient estimation, as it enables us to
obtain the conditional posterior distributions of the underlying latent factors (the time-
varying indices) in the model with Kalman filtering and smoothing (Kim and Nelson,
1999).

Although we draw heavily from the work of Pedroza (2006), some significant adaptations are
made to suit the situation that we are confronting.

First, we adapt the multiple-imputation algorithm that was proposed by Pedroza (2006).
Pedroza (2006) and a few other researchers (e.g. Czado et al. (2005) and Cairns et al. (2011))
have pointed out that Bayesian approaches can be used to handle missing data in the context
of stochastic mortality modelling, but none of them have applied these approaches to a real
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mortality data set that is subject to problems that are similar to those we are facing. In a
preliminary study, we find that the estimation algorithm of Pedroza (2006) simply does not
converge when it is applied to the Chinese mortality data set. The non-convergence problem
was also noted by Li (2014), who mentioned that

‘if the missing data are treated as variables, the number of variables involved increases significantly, and
it becomes very difficult for the simulation process to reach convergence’.

For this reason, he resorted to using only three years of data and (subjectively) adjusting the
understated forecast uncertainty, instead of adopting a more rigorous approach whereby a joint
posterior distribution of all the parameters is produced. When the adapted multiple-imputation
algorithm is implemented, the typical version of the Kalman filter is no longer applicable. To
overcome this technical challenge, we replace it with the sequential Kalman filter that was pro-
posed by Koopman and Durbin (2000) and reformulate the model in a sequential representation
accordingly.

Second, we introduce a Bayesian version of the cubic B-spline function that was consid-
ered by Renshaw and Haberman (2003) to smooth the pattern of the age response parameters
(denoted by βx in this and many other papers), which determine the expected rates of im-
provement in mortality at different ages. Although Bayesian formulations assume some sort of
smoothness of age and time effects (Czado et al., 2005), we find that the Bayesian estimates
of βxs for the Chinese population are very jagged across ages if additional smoothing is not
imposed (see Section 6.3). This outcome is possibly because the data array that is used is small
and has many discontinuities. A jagged pattern of βxs is undesirable, because, for example, it
is difficult to explain why mortality rates at adjacent ages evolve at highly different expected
speeds. The adaptation that we propose ensures that the posterior mean of βx follows a log-
ical relationship with age, allowing the resulting model to meet criterion 3 better (biological
reasonableness).

Third, we add a feature to address the fact that the Chinese mortality data are obtained from
different sources. We find that, if this fact is not addressed, the resulting prediction intervals
become erroneously wide and are therefore of limited usefulness (criterion 2 is not met) (see
Section 6.3). The added feature permits the variance of the error term in the observation equation
of the Lee–Carter model to be time inhomogeneous, taking one of the three possible values
depending on the data for the year that is associated with the error term obtained from a
nationwide census, a survey of 1% of the population or a survey of 0.1% of the population. The
necessary modifications to the conditional posterior distributions and the sequential Kalman
filter arising from this added feature are discussed and implemented.

When the full model with all the adaptations is applied to the Chinese mortality data set, the
estimation algorithm converges fairly quickly and the resulting posterior distributions of the
model parameters appear to be reasonable. Using the estimated full model, we generate fore-
casts of log(central death rates) over a horizon of 35 years. For every age, the central prediction
forms a logical extension from the observed values, and the measure of forecast uncertainty
is commensurate with the historical variability. We further use pseudodata sets to validate the
ability of the proposed method for handling the data-related problems. The pseudodata sets are
randomly generated from some assumed Lee–Carter parameters and are constructed in such a
way that they have the mentioned limitations of the actual Chinese mortality data set. When
applied to the pseudodata sets, the modelling and estimation approaches proposed produce pa-
rameter estimates that are sufficiently close to the parameters in the underlying data-generating
process, confirming the approach’s success in handling the data-related problems that we are
confronting.
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The remainder of this paper is organized as follows. Section 2 describes the Chinese mortality
data set in more detail and explains how it is connected to the missing data mechanisms that
were outlined in the work of Rubin (1976) and Mealli and Rubin (2015). Section 3 briefly reviews
the work of Pedroza (2006). Section 4 presents our proposed approach to modelling Chinese
mortality, with detailed descriptions of our technical innovations. Sections 5 and 6 discuss the
estimation and prediction results, and demonstrate the importance of the adaptations that are
made to the work of Pedroza (2006). Section 7 details the validation with pseudodata sets.
Finally, concluding remarks and suggestions for future research are given in Section 8.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/1467985x/series-
a-datasets

2. The available data

The mortality data (age-specific death and mid-year population counts) that are used in this pa-
per were obtained from the 1988–2015 China Population and Employment Statistics Yearbooks,
issued by the National Bureau of Statistics of China. The data span an age range of 0–99 years
and a time period of 1981–2014, covering 3400 age–time cells. However, as described below, the
data for some of the age–time cells within this age range and time period are not available.

(a) No mortality data are available for 1982–1985, 1987, 1988 and 1990–1993.
(b) For 1989, 1994, 1997–1999, 2001–2004 and 2006–2009, the mortality data above age 89

years are unavailable; for 1996, the mortality data above age 85 years are unavailable.
(c) No death count is reported for some individual age–time cells (e.g. age 7 years, 2008,

males).

Overall, there are 1197 and 1229 age–time cells in the data set for males and females respectively,
with no death and/or population count, representing 35.21% and 36.15% of the total number
of age–time cells respectively.

In addition to incompleteness, the available data are not always derived from the entire
national population. Only the data for 1981, 1989, 2000 and 2010 are based on nationwide
censuses. For 1986, 1995 and 2005 (midway between censuses), the data are based on surveys
of 1% of the national population. For all other years, the data are based on surveys of 0.1% of
the national population. The characteristics of the data set are summarized in Fig. 1.

For items (a) and (b), the missingness is due entirely to the fact that data were not collected,
and is treated as missingness completely at random in this paper. This treatment is justified by the
fact that the missingness is entirely under the data collector’s control (Graham et al. (2006), page
324), and the fact that the missing data were intentionally not recorded (i.e. planned missingness)
(Schafer and Graham, 2002).

For item (c), the reason behind the unreported death counts is not documented in the year-
books. Without knowing the exact reason for the missingness, we believe that it is prudent to
treat item (c) as missingness at random. One may, however, argue that the missingness for item
(c) is a consequence of finite sampling. When being drawn from only 0.1% of the national popu-
lation, the exposure count in each age–time cell tends to be small, which may in turn lead to no
realized death in certain age–time cells. If this argument is true, then missingness at random is
not a perfect fit for item (c) as the missingness may be correlated with age and/or exposure and
is not completely out of the control of the data collector. The available information does not
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Fig. 1. Lexis diagrams summarizing the availability of mortality data for (a) Chinese males and (b) Chinese
females: , data obtained from censuses; , data obtained from 1% surveys; , data obtained from 0.1%
surveys; , missing data



8 J. S.-H. Li, K. Q. Zhou, X. Zhu, W.-S. Chan and F. W.-H. Chan

permit us to prove or disprove this argument, and in this regard, the missingness mechanism
for item (c) should be viewed as an assumption.

3. Review of Pedroza’s (2006) approach

3.1. Lee–Carter model in a Gaussian formulation
The work of Pedroza (2006) is based on the Lee–Carter model (Lee and Carter, 1992), which
can be expressed as follows:

ln.mx,t/=αx +βxκt + εx,t , .1/

where mx,t is the central death rate for individuals aged x in year t, αx represents the average level
of mortality at age x, κt is a time-varying index governing the evolution of ln.mx,t/ over time,
βx measures the sensitivity of ln.mx,t/ to κt and εx,t is the error term, which has no correlation
across both age and time.

Following the original work of Lee and Carter (1992), it is assumed that {κt} follows a random
walk with drift:

κt =μ+κt−1 +ωt , .2/

where μ is the drift term and {ωt} is a sequence of independent and identically distributed
normal random variables with a zero mean and a variance of σ2. A non-stationary process is
used instead of a stationary process for two main reasons.

(a) If a stationary (mean-reverting) process is used, the expected trajectory of future mortality
would revert to a certain (average) historical level. Such a trajectory seems counterintu-
itive.

(b) In demographic forecasting, it is conceivable that, when we look further into the future,
we are more uncertain about what a demographic quantity may turn out to be. However,
if a stationary process is used, the forecast uncertainty would not grow with the forecast
horizon.

It is well known that the Lee–Carter model is subject to an identifiability problem. To stipulate
parameter uniqueness, the following constraints are used:

x0+na−1∑
x=x0

βx =1,

t0+ny−1∑
t=t0

κt =0,

.3/

where x0 and t0 are the youngest age and the earliest year covered by the data set respectively,
and na and ny are the numbers of ages and years covered by the data set respectively. For the
data set that is used in this paper, x0 =0, t0 =1981, na =100 and ny =34.

Pedroza (2006) chose to use a Gaussian formulation, meaning that the error term εx,t in
equation (1) is assumed to follow a normal distribution with a zero mean and a variance of
s2. Although other distributional assumptions such as Poisson (Wilmoth, 1993; Brouhns et al.,
2002) or negative binomial (Li, Hardy and Tan, 2009) may be used instead, the Gaussian for-
mulation is advantageous in the context of our research problem for the following reasons.

First, the Gaussian formulation permits us to use Gibbs sampling, with which samples of each
model parameter can be directly drawn from its conditional posterior distribution, provided that
an appropriate conjugate prior distribution is assumed. If a non-Gaussian formulation is used,
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then more computationally intensive methods such as the Metropolis–Hastings algorithm are
required.

Second, the Gaussian formulation implies that ln.mx,t/ is normally distributed, thereby avoid-
ing the possibility of imputing zero death rates (which will lead to a logarithm of 0 problem). If
the Poisson formulation is used instead, the imputed death rate for a blank age–time cell may
be 0, as a zero death count may be realized.

Third, the Gaussian formulation allows us to express the entire model (equations (1) and (2))
in a state space form, which can be adapted readily to suit the characteristics of the data set that
we consider.

3.2. Gibbs sampling
The Gaussian Lee–Carter model contains 2na + ny + 3 parameters in total, including
αx0 , : : : , αx0+na−1, βx0 , : : : , βx0+na−1, κt0 , : : : , κt0+ny−1, μ, s2 and σ2. The primary objective of
Gibbs sampling is to obtain the joint posterior distribution of all 2na +ny +3 parameters.

We let Y be an na ×ny matrix containing the historical central death rates, and

Θ={θ1, θ2, : : : , θ2na+ny+3}

be the set of all of the parameters in the model. We further use Θ−θj , j = 1, : : : , 2na + ny + 3,
to represent Θ excluding its jth entry. In each iteration of Gibbs sampling, a sample of θj is
drawn from its (full) conditional posterior distribution π.θj|Y, Θ−θj /. The process is repeated
for each j = 1, : : : , 2na + ny + 3, yielding a realization of the joint posterior distribution of Θ
(i.e. π.Θ|Y/). After a large number of iterations, an empirical joint posterior distribution of Θ
is obtained.

The conditional posterior distribution of θj depends on the assumed conditional prior dis-
tribution π.θj|Θ−θj /. For αxs, βxs, μ, s2 and σ2, improper prior distributions are assumed, i.e.
π.θj|Θ−θj / ∝ 1 for αxs, βxs and μ, and π.θj|Θ−θj / ∝ θ−1

j for s2 and σ2. The derivation of the
conditional posterior distributions of these parameters can be found in Pedroza (2006). For κts,
the conditional posterior distributions are obtained with a Kalman filter (Harvey, 1991), which
is detailed in the next subsection.

At the end of each Gibbs sampling iteration, parameters αx, βx and κt are rescaled so that
the two constraints that are specified in equation (3) are satisfied. In principle, it is possible
to include the constraints in the prior distributions for κt and βx. However, in an application
that involves a large volume of missing data, this alternative method (which is explained in the
on-line annex F) would result in numerical instability.

3.3. Kalman filter
Given a sample of αxs, βxs, μ, s2 and σ2, a sample of κts can be generated by using a Kalman
filter. To implement a Kalman filter, we first rewrite the model (equations (1) and (2)) in a state
space form as follows: observation equation,

yt =α+βκt +εt , εt ∼MVN.0, s2I/; .4/

state equation,

κt =μ+κt−1 +ωt , ωt ∼N.0, σ2/, .5/

where yt = .yx0,t , : : : , yx0+na−1,t/
′ = .ln.mx0,t/, : : : , ln.mx0+na−1,t//

′,α= .αx0 , : : : , αx0+na−1/′,β=
.βx0 , : : : , βx0+na−1/′, εt = .εx0,t , : : : , εx0+na−1,t/

′ and I is an na ×na identity matrix. The Kalman
filter can be separated into two parts: the filtering process and the smoothing process.
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3.3.1. The filtering process
The filtering process predicts and updates κt on the basis of Yt = .yt , yt−1, : : : , yt0/, which con-
tains all information up to and including time t. We let kt :=E.κt|Yt/ and pt :=var.κt|Yt/. The
filtering process derives kt and pt by using the following recursion, which runs from t = t0 to
t = t0 +ny −1:

kt =μ+kt−1 +gtηt ,

pt = .1−gtβ/.pt−1 +σ2/,

ηt =yt −α−β.μ+kt−1/,

Ft =β.pt−1 +σ2/β′ + s2I,

gt = .pt−1 +σ2/β′F−1
t

where ηt is an na ×1 column vector representing the prediction error of yt based on kt−1, Ft is
the na ×na covariance matrix of the prediction error and gt is a 1×na row vector denoting the
Kalman gain.

To begin the filtering process, the values of kt0−1 and pt0−1 are needed. Pedroza (2006) set
kt0−1 to 5 and pt0−1 to 10. Having completed the filtering process, we have a realization of kt

and pt for each t = t0, : : : , t0 +ny −1, with which the smoothing process can be executed.

3.3.2. The smoothing process
The smoothing process further smooths κt with information beyond time t. It is implemented
with the backward smoothing algorithm (Carter and Kohn, 1994), which runs (backwards)
from t = t0 +ny −1 to t = t0.

Let ht :=E.κt|Yt , κt+1/ and vt :=var.κt|Yt , κt+1/, for t = t0, : : : , t0 +ny −2, be the smoothed
conditional expectation and variance of κt respectively. All relevant information beyond time t

is incorporated in ht and vt . Note that we do not need to include κt+2 and onwards in ht and
vt , because {κt} follows a random walk. The backward smoothing algorithm is implemented
as follows.

Step 1: for t = t0 + ny − 1, draw a sample of κt from a normal distribution with a mean of
kt =E.κt|Yt/ and a variance of pt =var.κt|Yt/.
Step 2: for t = t0 +ny −2, : : : , t0,

(a) calculate ht and vt by using the value of κt+1 that is obtained from the previous step
and the equations

ht =kt +pt.pt +σ2/−1.κt+1 −μ−kt/,

vt =pt −p2
t .pt +σ2/−1;

(b) draw a sample of κt from N.ht , vt/.

Having completed a run of the backward smoothing algorithm, a sample of κt0 , : : : , κt0+ny−1
is obtained. It is then combined with the sample of αxs, βxs, μ, s2 and σ2 to form a realization
of the joint posterior distribution of the 2na +ny +3 parameters.

3.4. Multiple imputation
Pedroza (2006) further suggested using the method of multiple imputation when fitting the model
to a mortality data set that is subject to missing data problems. When multiple imputation is
used, the Gibbs sampling procedure is modified as follows.
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Step 1: at the beginning of each iteration of Gibbs sampling, impute all the missing data
points. Specifically, if the central death rate at age xÅ and year tÅ is missing, impute the value
of ln.mxÅ,tÅ / from

ln.mxÅ,tÅ |Θ/∼N.αxÅ +βxÅκtÅ , s2/,

where αxÅ , βxÅ , κtÅ and s2 are taken as the values drawn in the previous iteration.
Step 2: the imputed values of all of the missing data points are combined with the observed
data points to form a ‘complete’ data set, which is then used to obtain a realization of
the model parameters by using the algorithms that were outlined in the previous subsec-
tions.
Step 3: repeat steps 1 and 2 to obtain an empirical posterior distribution of the model param-
eters.

4. The proposed stochastic model for Chinese mortality

4.1. Abridged multiple imputation
Pedroza (2006) did not implement the multiple-imputation method by using a real data set with
missing data points. When we apply the method directly to the Chinese mortality data set, we
find that the posterior distribution of the model parameters does not converge.

The non-convergence problem may be attributed to the fact that the proportion of missing
data is too large (see Section 2). What we encounter is reminiscent of the demonstrations by
Schafer (1997), which show that, when some data are missing, the joint posterior distribution
is not necessarily proper if non-informative prior distributions are assumed, so convergence is
not guaranteed, and that the non-convergence problem is exacerbated if

(a) the number of data points is small compared with the number of parameters and/or
(b) the proportion of missing data is high.

Note that both conditions (a) and (b) apply to the situation that we are confronting.
To circumvent this problem, we choose to impute only the individual missing (unreported)

values (item (c) in Section 2) but not the missing values that appear in blocks (items (a) and (b)
in Section 2). The rationale is that, as discussed in Section 2, the missing values that appear in
blocks fit the definition of missingness completely at random. Not imputing data that are missing
at random does not affect the validity of statistical inferences and predictions (Graham (2012),
page 48; Van Buuren (2012), page 8). We emphasize that (as shown in subsequent sections) we
still obtain a joint posterior distribution of all the model parameters even though not all of the
missing values are imputed.

When this abridged multiple imputation is used, the conditional posterior distributions of
αx, βx and σ2 must be modified to reflect that they are conditioned on a partially imputed
incomplete data set. The modified conditional posterior distributions are as follows.

(a) The conditional posterior distribution of αx is N.aα, bα/, where

aα =
(

t0+ny−1∑
t=t0

1x,t

s2

)−1
t0+ny−1∑

t=t0

ln.mx,t/−βxκt

s2 1x,t , .6/

bα =
(

t0+ny−1∑
t=t0

1x,t

s2

)−1

, .7/
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and 1x,t is an indicator function that equals 1 if the central death rate for age x and year
t is available, and 0 otherwise.

(b) The conditional posterior distribution of βx is N.aβ , bβ/, where

aβ =
(

t0+ny−1∑
t=t0

κ2
t 1x,t

s2

)−1
t0+ny−1∑

t=t0

ln.mx,t/−αx

s2 κt1x,t .8/

and

bβ =
(

t0+ny−1∑
t=t0

κ2
t 1x,t

s2

)−1

: .9/

(c) The conditional posterior distribution of s2 is an inverse gamma distribution with a shape
parameter of

as =
∑x0+na−1

x=x0

∑t0+ny−1
t=t0 1x,t

2

and a rate parameter of

bs =
∑x0+na−1

x=x0

∑t0+ny−1
t=t0 {ln.mx,t/−αx −βxκt}21x,t

2
:

The conditional posterior distributions of μ and σ2 require no modification. They are provided
below for completeness.

(a) The conditional posterior distribution of μ is N.aμ, bμ/, where

aμ = κt0+ny−1 −κt0

ny −1
,

bμ = σ2

ny −1
:

.10/

(b) The conditional posterior distribution of σ2 is an inverse gamma distribution with a shape
parameter of

aσ = ny −1
2

and a rate parameter of

bσ =
∑t0+ny−1

t=t0+1 .κt −κt−1 −μ/2

2
:

In the presence of missing data, initial values are critically important to Gibbs sampling
(Carpenter and Kenward, 2013). If inappropriate initial values are used, the rate of convergence
can be very slow. To improve convergence, we choose the initial values with the following
procedure.

Step 1: obtain a crude estimate of each missing death or exposure count by linearly inter-
polating between adjacent (non-missing) values. A ‘complete’ data set is then obtained.
Step 2: obtain crude estimates of the model parameters by using Poisson maximum likelihood
(Wilmoth, 1993; Brouhns et al., 2002). Poisson maximum likelihood is regarded as a standard
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(frequentist-type) method for estimating the Lee–Carter model when there are no missing data.
We have experimented with other methods such as singular value decomposition, which was
used in the original work of Lee and Carter (1992). The final estimation results are esssentially
the same if another method of obtaining crude estimates is used.
Step 3: using the crude estimates from the previous step as initial values, apply the Gibbs
sampling algorithm to the ‘complete’ data set.
Step 4: using the posterior means of the parameters from the previous step as initial values,
apply the Gibbs sampling algorithm with multiple imputation to the actual data set (in which
some central death rates are missing). This step yields the final estimated model.

This procedure enables the Gibbs sampling algorithm from which the final estimated model is
derived to start at a state that is sufficiently close to the stationary state.

4.2. Sequential Kalman filter
In the abridged multiple imputation, we do not impute item (b) defined in Section 2. As a result,
we do not always have a complete vector of observed or imputed death rates yt , which is required
in the third step of the filtering process that was described in Section 3.3.1.

To overcome this technical challenge, we replace the original Kalman filter with the sequential
Kalman filter that was proposed by Koopman and Durbin (2000). Instead of running the filtering
process in a vector form, the sequential Kalman filter uses only one element in yt in each step,
incorporating the observed or imputed log(central death rates) into kt and pt one at a time.

To implement the sequential Kalman filter, we first rewrite the state space form of the Lee–
Carter model in a sequential representation:

ln.mx,t/=αx +βxκx,t + εx,t , .11/

κx,t =
{

κx−1,t if x0 <x�x0 +na −1,
μ+κx0+na−1,t−1 +ωt if x=x0, .12/

where εx,t ∼IID N.0, s2/ and ωt ∼IID N.0, σ2/ as before. In the sequential representation, each
log(central death rate) is driven by a hidden state κx,t that depends on both age and time.
However, as equation (12) implies, in a given year t the values of κx,t are the same for all ages.

We let

Yx,t ={yx,t , yx−1,t , : : : , yx0,t , Yt−1},

which contains all information from years t0 to t − 1 and partial information (from age x0 to
x) in year t. The sequential filtering process updates kx,t :=E.κt|Yx,t/ and px,t :=var.κt|Yx,t/ as
follows.

For x=x0, we have

kx0,t =μ+kx0+na−1,t−1 +gx0,tηx0,t ,

px0,t = .1−gx0,tβx0/.px0+na−1,t−1 +σ2/,

ηx0,t =yx0,t −αx0 −βx0.μ+kx0+na−1,t−1/,

gx0,t = .px0+na−1,t−1 +σ2/βx0

.px0+na−1, t−1 +σ2/β2
x0

+ s2
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when t = t0 + 1, : : : , t0 + ny − 1 and, as we use diffuse initial values for the sequential Kalman
filter, we have

kx0,t0 = yx0,t0 −αx0

βx0

,

px0,t0 = s2

β2
x0

:

when t = t0, where ηx,t represents the prediction error of yx,t , and gx,t denotes the Kalman gain.
Further, for x0 <x�x0 +na −1, we have

kx,t =kx−1,t +gx,tηx,t ,

px,t = .1−gx,tβx/px−1,t ,

ηx,t =yx,t −αx −βxkx−1,t ,

gx,t = px−1,tβx

px−1,tβ2
x + s2 :

The recursion runs from t = t0 to t = t0 +ny − 1 and, for each t, from x=x0 to x=x0 +na − 1.
In contrast with the original filtering process, the sequential filtering process does not involve
inversions of large dimension matrices and is therefore more efficient (Koopman and Durbin
(2000), page 287).

Having completed the entire recursion, we obtain the values of kx,t for x=x0, : : : , x0 +na −1
and t = t0, : : : , t0 +ny −1, from which we obtain the values of kt0 , : : : , kt0+ny−1 as

kx0+na−1,t =E.κt|Yx0+na−1,t/=E.κt|Yt/=kt

according to the definitions of kx,t , kt , Yt and Yx,t . The values of kt0 , : : : , kt0+ny−1 are then fed
into the backward smoothing algorithm (Section 3.3.2) in which a sample of κt0 , : : : , κt0+ny−1
is drawn.

The sequential filtering process can be modified readily to suit the abridged multiple imputa-
tion. If a data point (say yx,t) is missing and not imputed, then we change the equations for kx,t
and px,t in the recursion to

kx,t =
{

μ+kx0+na−1,t−1, x=x0,
kx−1,t , x=x0 +1, : : : , x0 +na −1,

and

px,t =
{

px0+na−1,t−1 +σ2, x=x0,
px−1,t , x=x0 +1, : : : , x0 +na −1

respectively, so that no information concerning yx,t is incorporated in kx,t and px,t .

4.3. Smoothing the age–response parameters
Our preliminary work shows that, without any special treatment, the Bayesian estimates of βx

derived from the Chinese mortality data set exhibit a very jagged pattern across ages. With such
estimates of βx, the projected future mortality rates do not have a smooth, logical age pattern.
The same problem was also encountered in the work of Huang and Browne (2017), page 42, who
applied the Lee–Carter model to a portion of the Chinese mortality data set. The abnormally
jagged pattern of βx is in part because the length of the data set is too short and in part because
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some exposure counts (those in the years for which the data are obtained from surveys) are
too small. To ensure that the resulting mortality forecasts are demographically reasonable, an
adaptation that smooths the pattern of βx across ages is needed.

There are a few methods for smoothing the pattern of βx across ages during the course of
estimation, including the penalized log-likelihood approach (Delwarde et al., 2007) and the
cubic B-splines method (Renshaw and Haberman, 2003). We choose to extend the cubic B-
splines method to a Bayesian set-up.

The cubic B-splines function for smoothing βx is defined as follows:

βx = c0 + c1 ln.x+1/+ c2 ln.x+1/2 + c3 ln.x+1/3 +
r∑

j=1
c3+j.ln.x+1/− ln.xj +1//3

+, .13/

where cj for j = 0, 1, : : : , r + 3 are the coefficients, r denotes the number of knots, xj for j =
1, 2, : : : , r are the chosen knot ages, and .ln.x+1/− ln.xj +1//3+ equals {ln.x+1/− ln.xj +1/}3

if x>xj, and 0 otherwise. To extend the method to a Bayesian set-up, we first rewrite equation
(13) in a matrix form as

β=Ac,

where c = .c0, : : : , cr+3/′, and A is an na × .r +4/ matrix of which the ith row is given by

.1, ln.x0 + i/, ln.x0 + i/2, ln.x0 + i/3, .ln.x0 + i/− ln.x1 +1//3
+, : : : , .ln.x0 + i/− ln.xr +1//3

+/:

Our goal is to derive the conditional posterior distribution of c, which will in turn produce
posterior distributions of βxs whose expectations are smooth across ages. Assuming an improper
conditional prior distribution, the conditional posterior distribution of c is MVN.ac, Bc/, where

ac =
(

t0+ny−1∑
t=t0

κ2
t

s2 A′ItA

)−1(
t0+ny−1∑

t=t0

κt

s2 A′It.yt −α/

)
, .14/

Bc =
(

t0+ny−1∑
t=t0

κ2
t

s2 A′ItA

)−1

, .15/

and It is an na ×na diagonal matrix, of which the ith diagonal element equals 0 if mx0+i−1,t is
missing and not imputed, and 1 otherwise.

The jaggedness is less significant for αx, but for consistency we also apply a cubic B-splines
function with the same number of knots, r, and the same knot ages .x1, : : : xr/ to αx. In a matrix
form, the cubic B-splines function for smoothing αx is given by

α=Ad,

where d= .d0, : : : , dr+3/′ represents the vector of coefficients. Assuming an improper conditional
prior distribution, the conditional posterior distribution of d is MVN.ad, Bd/, where

ad =
(

t0+ny−1∑
t=t0

1
s2 A′ItA

)−1(
t0+ny−1∑

t=t0

1
s2 A′It.yt −βκt/

)
.16/

and

Bd =
(

t0+ny−1∑
t=t0

1
s2 A′ItA

)−1

: .17/



16 J. S.-H. Li, K. Q. Zhou, X. Zhu, W.-S. Chan and F. W.-H. Chan

The knot ages .x1, : : : xr/ are evenly spaced between ages 0 and 70 years. We used evenly
spaced knots between ages 0 and 70 years and no knot between ages 70 and 99 years for two
reasons. First, too much flexibility beyond age 70 years may result in a counterintuitive outcome
that projected mortality rates at older ages are not monotonically increasing with age. Second,
placing all knots between age 0 and 70 years enables us to capture the accident hump better. The
number of knots, r, is determined by using the deviance information criterion (Spiegelhalter
et al., 2002), which is designed to compare different Bayesian models. The Bayesian deviance is
defined by

D.Θ/=−2 ln{Pr.Y|Θ/}+2 ln{f.Y/},

where f.Y/ is a fully specified standardizing term which depends on Y only and, following
Spiegelhalter et al. (2002), the deviance information criterion is defined as

DIC=E{D.Θ/|Y}+E{D.Θ/|Y}−D{E.Θ|Y/},

where E{D.Θ/|Y} measures the goodness of fit and E{D.Θ/|Y}− D{E.Θ|Y/} penalizes the
use of more parameters. Note that this definition of DIC coincides with the seventh definition of
DIC in the work of Celeux et al. (2006). We can compute E{D.Θ/|Y} and D{E.Θ|Y/} readily
by using the empirical joint posterior distribution of Θ. There is no need to determine f.Y/,
because it does not depend on the model and hence is cancelled out in model comparisons. We
choose the number of knots, r, that yields the smallest DIC.

4.4. Incorporating sampling uncertainty that depends on the source of data
As discussed in Section 2, a good proportion of the available data is based on surveys of 1%
or 0.1% of the national population instead of nationwide censuses. Fig. 2 shows the log(central
death rates) from age 0 to 99 years for 2010 (for which the data are based on a nationwide
census), 2005 (for which the data are based on a survey of 1% of the national population) and
2014 (for which the data are based on a survey of 0.1% of the national population). It is clear that
the observed log(central death rates) in the three years chosen are subject to different amounts
of volatility.

Therefore, for the data set in question, it is inappropriate to assume that εx,t has a variance of
s2 which does not depend on whether the data for year t are obtained from a census or survey.
If the same value of s2 is used for every year, we shall overestimate the variance of εx,t in years
for which the data are obtained from censuses, which will in turn lead to overly wide prediction
intervals when predicting the underlying future death rates for the entire national population.

To take this special characteristic of the data set into account, we further extend the model
by permitting the variance of εx,t to be time inhomogeneous. In our extension, the observation
equation (equation (4)) of the model is modified to

yt =α+βκt +εt , εt ∼MVN.0, s2
t I/,

where s2
t takes three distinct values, reflecting the nature of the data for year t:

s2
t =
⎧⎨
⎩

s2
c t ∈Tc,

s2
1% t ∈T1%,

s2
0:1% t ∈T0:1%,

where Tc, T1% and T0:1% represent the collections of years for which the data are obtained
from nationwide censuses, surveys of 1% of the national population and surveys of 0.1% of the
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Fig. 2. Log(central death rates) from age 0 to 99 years for (a) 2010 (for which the data are based on a
nationwide census), (b) 2005 (for which the data are based on a survey of 1% of the national population) and
(c) 2014 (for which the data are based on a survey of 0.1% of the national population)

national population respectively. The conditional posterior distribution of s2
t is the same as that

of s2, except that the second summation in the numerators of as and bs is taken over either t ∈Tc,
t ∈T1% or t ∈T0:1%, whichever is appropriate.

The conditional posterior distributions of αx, βx, c and d must be modified accordingly.
Specifically, s2 in equations (6)–(9) and (14)–(17) is replaced by s2

t . We also need to replace s2

by s2
t in the algorithm for the sequential Kalman filter.
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5. Estimation results

In this section, we estimate the full model with the adaptations that were described in Sections
4.3 and 4.4 to the Chinese mortality data. The estimation is completed by using Gibbs sampling
with the abridged multiple imputation (Section 4.1) and the sequential Kalman filter (Section
4.2). The estimation results for both genders have similar properties, and therefore for brevity
we show only those for males in the main text. The estimation results for females are provided
in the on-line annex E.

5.1. Convergence of parameters
Using the initial values that were determined by the procedure described in Section 4.1, the
Gibbs sampling algorithm converges fairly quickly (within 25 iterations). As usual in Gibbs
sampling, we treat the first 500 drawn values as ‘burn-in’ and discard them. To mitigate auto-
correlation, only one sample is recorded in every 100 values drawn after the burn-in period.
In total, 5000 samples are recorded and used to form the joint posterior distribution. Further
details concerning convergence of parameters are provided in the on-line annex A.

5.2. Posterior distributions of parameters
The fan charts in Fig. 3 display the posterior distributions of αx, βx and κt for x = 0, : : : , 99
and t = 1981, : : : , 2014. Each fan chart shows the equal-tail 10% credible interval with the
heaviest shading, surrounded by the 20%, 30%, : : : , 90% credible intervals with progressively
lighter shadings. The width of a fan chart indicates the level of parameter uncertainty that is
entailed.

The pattern of the posterior means of αxs is generally in line with a typical age pattern of
mortality. With the aid of the cubic B-splines functions, the patterns of the posterior means of
both αxs and βxs are smooth.

As expected, the posterior means of κts exhibit a downward trend. The variation in the
uncertainty surrounding κt over time is highly in line with the structure of the data set. In 1982–
1985, 1987, 1988 and 1990–1993 for which no mortality data are available, the width of the fan
chart of κt is particularly wide.

Fig. 4 depicts the posterior distributions of s2
c , s2

1% and s2
0:1%. The posterior means of s2

c ,
s2

1% and s2
0:1% are considerably different, confirming the need for allowing the variance of

εx,t to change according to how the data are obtained. As expected, the posterior mean of
s2

c (which represents the extent of sampling uncertainty when the data are obtained from cen-
suses) is the lowest, whereas the posterior mean of s2

0:1% (which represents the extent of sampling
uncertainty when the data are obtained from surveys of 0.1% of the population) is the highest.

Finally, Fig. 5 shows the posterior distributions of the parameters in the state equation. It is
noteworthy that μ is subject to much parameter uncertainty, with a posterior distribution that
spans both positive values (which imply mortality improvement) and negative values (which
imply mortality deterioration).

6. Prediction results

In this section, we present the prediction results that are derived by using the data for Chinese
males. We first present the baseline results that are obtained from the full model, followed by a
demonstration of how the prediction results may change if we ignore parameter uncertainty or
omit the adaptations proposed.
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Fig. 3. Posterior distributions of (a) αx , (b) βx and (c) κt for x D0,. . . , 99 and t D1981,. . . , 2014

6.1. Baseline results
Predictions of future mortality are obtained from the posterior predictive distribution of
yt0+ny−1+u, u = 1, 2, : : :. Assuming that historical and future log(central death rates) are in-
dependently distributed given Θ, the posterior predictive distribution of yt0+ny−1+u is given by

f.yt0+ny−1+u|Y/=
∫

f.yt0+ny−1+u|Θ/π.Θ|Y/dΘ, u=1, 2, : : : ,

where f.yt0+ny−1+u|Θ/ is the density function of MVN.α+βκt0+ny−1+u, s2
t0+ny−1+uI/: the dis-

tribution of yt0+ny−1+u given Θ.
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Fig. 4. Posterior distributions of s2
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The posterior predictive distribution depends on the choice of s2
t0+ny−1+u. When predicting

mortality for the entire population, one should set s2
t0+ny−1+u to s2

c . Alternatively, if we are
interested in knowing how the observed central death rates in year t0 + ny − 1 + u may look
if they are sampled from 1% (or 0.1%) of the population, then we may set s2

t0+ny−1+u to s2
1%

(or s2
0:1%). The choice of s2

t0+ny−1+u affects only the prediction intervals but not the central
prediction (the posterior predictive mean), as the expected value of εx,t0+ny−1+u is 0 no matter
which one of the three options is chosen.

We obtain the posterior predictive distribution numerically with the following procedure.

Step 1: obtain a realization of Θ from its empirical posterior distribution.
Step 2: given the values of μ, σ2 and κt0+ny−1 in the realization of Θ from the previous step,
simulate a realization of κt0+ny−1+u from its conditional predictive distribution N.κt0+ny−1 +
uμ, uσ2/.
Step 3: given the realizations of κt0+ny−1+u and Θ from the previous two steps, simulate a
realization of yt0+ny−1+u from its conditional predictive distribution MVN.α+βκt0+ny−1+u,
s2
t0+ny−1+uI/.

Step 4: repeat steps 1–3 to obtain a large number of realizations of yt0+ny−1+u, which collec-
tively form an empirical posterior predictive distribution of yt0+ny−1+u.

Fig. 6 presents the predictions of central death rates at ages 0, 10, 20 , : : : , 90 years over a
horizon of 35 years. Three 90% prediction intervals, which are respectively derived by setting
{s2

t ; t = 2015, : : : , 2049}, to s2
c (the full curves), s2

1% (the broken curves) and s2
0:1% (the dotted
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Fig. 5. Posterior distributions of (a) μ and (b) σ2
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Fig. 6. 90% prediction intervals for the central death rates at ages (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, (f)
50, (g) 60, (h) 70, (i) 80 and (j) 90 years for the 2015–2049 period, based on s2

c ( ), s2
1% (— —) and

s2
0:1% ( ) (the central prediction is presented by the line in the middle of the prediction intervals): �,

historical central death rates for those obtained from censuses; �, historical central death rates for those
obtained from surveys of 1% of the population; �, historical death rates for those obtained from surveys of
0.1% of the population

curves), are displayed in each panel. The line in the middle of the prediction intervals represents
the central prediction. Also depicted in Fig. 6 are the observed historical log(central death rates):
those obtained from nationwide censuses are shown as circles, those obtained from surveys of
1% of the national population are shown as squares and those obtained from surveys of 0.1%
of the national population are shown as crosses.

Two key observations can be made from Fig. 6. First, the central prediction appears to be a
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logical progression of the historical values. The gradient of the central prediction is particularly
close to that of the line joining the circles (historical values obtained from censuses).

Second, the widths of the prediction intervals are commensurate with the variability of the
observed historical values. In each panel, the narrowest prediction interval (based on s2

c ) seems
to be sufficient for capturing the variation in the circles (historical values obtained from cen-
suses), and the other two prediction intervals (based on s2

1% and s2
0:1%) appear to be adequate in

capturing the additional variation in the squares and crosses (historical values obtained from
surveys).

6.2. The importance of parameter uncertainty
The prediction intervals that were presented in the previous subsection include three sources
of uncertainty, namely the stochastic uncertainty in the random walk for {κt}, the parameter
uncertainty that is implied by the joint posterior distribution of the parameters and the sampling
uncertainty that is captured by the error term in the observation equation. In this subsection, we
demonstrate the importance of incorporating parameter uncertainty when forecasting Chinese
mortality by comparing the previously presented prediction intervals with the corresponding
prediction intervals that do not incorporate any parameter uncertainty.

We use the following procedure to generate prediction intervals that do not include parameter
uncertainty.

Step 1: calculate E.μ|Y/, E.σ2|Y/, E.κt0+ny−1|Y/, E.α|Y/, E.β|Y/ and E.s2
t0+ny−1+u|Y/ from

the posterior distributions of the model parameters.
Step 2: simulate a realization of κt0+ny−1+u for each u=1, 2, : : : from its predictive distribution,

N{E.κt0+ny−1|Y/+u E.μ|Y/, u E.σ2|Y/}:

Step 3: given the result from step 2, simulate a realization of yt0+ny−1+u for each u=1, 2, : : :

from its predictive distribution,

MVN{E.α|Y/+E.β|Y/κt0+ny−1+u, E.s2
t0+ny−1+u|Y/I}:

Step 4: repeat steps 2 and 3 to obtain an empirical predictive distribution of yt0+ny−1+u for each
u=1, 2, : : :. The lower 5% and upper 95% percentiles of the empirical predictive distributions
form 90% prediction intervals that do not include any parameter uncertainty.

Fig. 7 compares the prediction intervals of log(central death rates) with and without parameter
uncertainty. When parameter uncertainty is removed, the prediction intervals at all ages are
significantly narrower. The reduction in width is more significant for longer horizon predictions.
These findings suggest that parameter uncertainty is important when considering the Chinese
mortality data set, and that ignoring it may lead to an understatement of the true level of
uncertainty that is entailed in the prediction of future Chinese mortality.

Finally, we remark that the parameter uncertainty that is associated with μ plays a particularly
important role in long horizon forecasts. This can be understood by considering the fact that
the posterior predictive variance of κt0+ny−1+u, given by

var.κt0+ny−1+u|Y/=var{E.κt0+ny−1+u|Θ/|Y}+E{var.κt0+ny−1+u|Θ/|Y}
=var.κt0+ny−1 +uμ|Y/+E.uσ2|Y/

=var.κt0+ny−1|Y/+u2var.μ|Y/+2u cov.κt0+ny−1, μ|Y/+u E.σ2|Y/,

is related to u2 times the posterior variance of μ.
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Fig. 7. 90% prediction intervals of log(central death rates) at ages (a) 0, (b) 10, (c) 20, (d) 30, (e) 40, (f)
50, (g) 60, (h) 70, (i) 80 and (j) 90 years over a horizon of 35 years, with parameter uncertainty ( ) and
without parameter uncertainty ( ): all of the prediction intervals shown are derived by using s2

t D s2
c for

t D2015,. . . , 2049

6.3. Importance of the proposed adaptations
The results that were presented in Sections 5 and 6.1 are based on the full model, which includes
the adaptations for smoothing the age-specific parameters and incorporating sampling uncer-
tainty that depends on the source of data. In this subsection, we demonstrate how the estimation
and prediction results may change if these two adaptations are switched off.

Fig. 8 compares the posterior distributions of βxs when the two adaptations are used and not
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Fig. 8. Posterior distributions of βxs when the adaptations proposed in Sections 4.3 and 4.4 are used ( )
and not used ( )

used. Without the B-splines function for smoothing βx, the resulting pattern of the posterior
means of βxs becomes highly erratic. Such a pattern leads to counterintuitive projection results.
For example, in the absence of the B-splines function, the posterior means of βx at ages 9 and 10
years are −0:0003 and 0.0128 years respectively, which means that the log(central death rates)
at these two ages are expected to evolve in opposite directions, which is an outcome that makes
no demographic sense. The problem can also be observed in Fig. 9, in which we compare the
projected age patterns of future mortality generated from the full model and the model without
the adaptations proposed.

Fig. 10 displays the central and 90% interval predictions of log(central death rates), derived
from the restricted model that does not incorporate the two proposed adaptations. Compared
with those derived from the full model, the central predictions that are generated from the
restricted model are not so in line with the corresponding historical values. The problem is most
apparent in Fig. 10(f) for age 50 years, where we observe that the central projection and the
line joining the circles (historical values obtained from censuses) have quite different slopes. A
likely cause of the problem is a misestimation of βxs, which arises as the B-splines function is
removed.

The prediction intervals that are presented in Fig. 10 appear to be too wide if we view them as
prediction intervals for the log(central death rates) of the national population. As discussed earl-
ier, when predicting future mortality for the entire population, the uncertainty due to sampling
from a fraction of the population should be excluded, and for this reason a flexible specification
of var.εx,t/ is proposed. When the restricted model is used, the prediction intervals reflect the
piece of uncertainty that should not be taken into consideration and are therefore too wide. The
problem is particularly obvious for shorter-term projections. For example, at age 50 years, the
interval for the 1-year-ahead projection is sufficiently wide to encompass all except only one
historical values.
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Fig. 9. Central prediction of log(central death rates) in 2015, 2020,. . . , 2049, derived from (a) the full model
and (b) the model without the adaptations proposed in Sections 4.3 and 4.4
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Fig. 10. Central and 90% interval predictions of the log(central death rates) at ages (a) 0, (b) 10, (c) 20,
(d) 30, (e) 40, (f) 50, (g) 60, (h) 70, (i) 80 and (j) 90 years in the 2015–2049 period, derived from the model
without the adaptations proposed in Sections 4.3 and 4.4 ( ) and from the full model (based on s2

c /
( ): �, historical central death rates obtained from censuses

7. Validation of the proposed modelling and estimation approaches

7.1. Generating pseudodata sets
We use pseudodata sets to validate the modelling approach proposed. Each pseudodata set has
the same dimension as the actual data set (i.e. na = 100 and ny = 34) and is generated with the
following procedure.

Step 1: the exposure counts are taken as those in the actual data set (for Chinese males). This



28 J. S.-H. Li, K. Q. Zhou, X. Zhu, W.-S. Chan and F. W.-H. Chan

1981 1986 1989 1995 2000 2005 2010

Year

10

20

30

40

50

60

70

80

90
A

ge

Missing

Census

1% Survey

0.1% Survey

Fig. 11. Lexis diagram summarizing the structure of one of the generated pseudodata sets

step implies that the pseudodata set is subject to exactly the same missing value problems as
described in items (a) and (b) in Section 2.
Step 2: the death count at age x and in year t is obtained by simulating a realization of a
Poisson distribution with a mean of

Ex,t exp{E.αx|Y/+E.βx|Y/E.κt|Y/},

where Ex,t is the corresponding exposure count (obtained from the previous step), and E.αx|Y/,
E.βx|Y/ and E.κt|Y/ are the posterior means of αx, βx and κt calculated in Section 5.2 re-
spectively.
Step 3: for each age–time cell in which the exposure count is available, calculate the simulated
log(central death rate) as ln.m̃x,t/ = ln.D̃x,t=Ex,t/, where D̃x,t denotes the simulated death
count for age x and year t. When D̃x,t =0, the corresponding log(central death rate) is recorded
as ‘unreported’, thereby resembling the missing data problem that was described in item (c)
in Section 2.

Re-estimating our model with such pseudodata sets enables us to examine how our model
may perform if the normality assumption does not hold and if heteroscedasticity exists (as the
pseudodata generation procedure implies that the variances at different ages and in different
calendar years are generally different).

Fig. 11 summarizes the structure of one of the pseudodata sets generated. This structure is
identical to that of the actual data set for Chinese males (Fig. 1(a)), except that the locations
and exact number of the individual missing values are different owing to the Poisson variations
in step 2 of the procedure above.
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Fig. 12. Log(central death rates) for (a) 2010, (b) 2005 and (c) 2014 in one of the generated pseudodata
sets

Fig. 12 shows the log(central death rates) for 2010, 2005 and 2014 in one of the generated
pseudodata sets. By comparing them with the corresponding values in the actual data set (see
Fig. 2), we conclude that the pseudodata set closely reproduces the three different levels of
sampling uncertainty that are found in the actual data set.

As implied by step 2 in the procedure above, the data-generating process underlying the
pseudodata sets is the Lee–Carter model with parameters equal to the posterior parameter means
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derived from the actual data set. Hence, if our proposed modelling and estimation approaches
are appropriate, then, when applied to the pseudodata sets, they should result in parameter
estimates that are sufficiently close to the parameters in the underlying data-generating process.

7.2. Validation results
The full curves in Fig. 13 show the 90% credible intervals of αx, βx and κt for x = 0, : : : , 99
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Fig. 13. 90% credible intervals ( ) of (a) αx , (b) βx and (c) κt for x D0,. . . , 99 and t D1981,. . . , 2014,
calculated by using the posterior distributions derived from one of the pseudodata sets: , corresponding
‘true’ parameter values
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years and t = 1981, : : : , 2014, calculated by using the posterior distributions that were derived
from one of the pseudodata sets. They should be compared against the corresponding ‘true’
parameters (i.e. those in the underlying data-generating process), which are shown in broken
curves in Fig. 13.

For αx and βx, the 90% credible intervals are rather narrow, suggesting that the extent of
parameter uncertainty arising from finite sampling and missing values is small for these age-
specific parameters. Despite being narrow, the 90% credible intervals capture all the ‘true’ values
of αx and βx, providing strong support for using the proposed methods to estimate the model
in the presence of missing data and finite sampling.

For κt , the 90% credible intervals are wider, indicating that finite sampling and missing values
create more uncertainty surrounding this parameter. The 90% credible intervals enclose most
(33 out of 34) of the ‘true’ parameter values, suggesting that the proposed estimation methods
can estimate κt reasonably accurately in the presence of missing data and finite sampling. Note
also that they have comparable widths with those for the κts derived from the real Chinese
mortality data set (see Fig. 3(b)).

When applied to the rest of the generated pseudodata sets, the estimates of αx and βx remain
almost unchanged. The estimates of κt vary observably when different data sets are used, but
the 90% credible intervals consistently capture most of the ‘true’ parameter values (Fig. 14).

We acknowledge that this analysis may not be comprehensive, as the Poisson psuedodata sets
do not capture, for example, the possibility that the variance of a random death count is greater
than the mean. In the on-line annex B, we present two additional analyses that are based on
psuedodata sets generated from (log-)normal distributions and Student t-distributions instead.
For all the tests performed, the parameter estimates that were obtained from the pseudodata
sets are highly similar to those derived from the actual data set. The normality assumption that
we made therefore appears to be reasonable.

7.3. A cautionary note
As pointed out by Li and Chan (2005) and Zhou and Li (2013), mortality forecasts that are pro-
duced by the original Lee–Carter model are highly sensitive to the values of κt in the beginning
and ending years of the data sample (i.e. κt0 and κt0+ny−1). This problem still exists even if the
model is estimated with Bayesian methods instead of singular value decomposition or maximum
likelihood. To demonstrate, consider the u-step-ahead forecast of log(central death rates), all of
which are critically dependent on the posterior predictive mean of κt0+ny−1+u, given by

E.κt0+ny−1|Y/+u E.μ|Y/:

This expression depends entirely on (the posterior mean of) κt0+ny−1, which governs the ini-
tialization of the forecast, and (the posterior mean of) μ, which determines the gradient of
the expected trajectory. Furthermore, as shown in expression (10), the mean of the conditional
posterior distribution of μ is

κt0+ny−1 −κt0

ny −1
,

which is determined exclusively by κt0+ny−1 and κt0 .
As discussed in Section 7.2, the estimates of κt vary across the pseudodata sets. The coloured

jagged curves in Fig. 15 represent the posterior means of κt for t = 1981, : : : , 2014, obtained
from three different pseudodata sets. The variation in the posterior means of κt is very subtle
for years when the exposure size equals the population size (1981, 1989, 2000 and 2010) but
is more pronounced for years when the exposure size is only a fraction of the population size.
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Fig. 15. Posterior means of κ1981,. . . ,κ2014 ( , pseudodata set 1; , pseudodata set 2; ,
pseudodata set 3), expected trajectories of κ2015, κ2016,. . . ( , , ) and the line that passes
through E.κ2014jY/ and has a slope of E.μjY/ ( , , ) obtained from three of the generated
pseudodata sets (without any adjustment): , — —, , corresponding values implied by the ‘true’
parameters

In the final year (2014) of the pseudodata sets, the exposures sizes are 0.1% of the respective
population sizes, so the expected trajectories (posterior predictive means) of κ2015, κ2016, : : :

may vary considerably across different pseudodata sets. This phenomenon can be observed in
the coloured broken lines in Fig. 15, which represent the expected trajectories of κ2015, κ2016, : : :

obtained from three of the generated pseudosamples. These expected trajectories have noticeably
different levels and gradients. Some of them are quite different from the expected trajectory that
is implied by the ‘true’ parameters, which is represented by the black broken line in Fig. 15.

For the real Chinese mortality data set, the data in the last year (2014) were obtained from a
survey of 0.1% of the population. Thus, as Fig. 15 suggests, the resulting mortality forecasts are
influenced by the large amount of uncertainty that is associated with κ2014. One possible way
to mitigate this problem is to adjust the posterior predictive mean of κ2014+u, u=1, 2, : : :, from

E.κ2014|Y/+u E.μ|Y/

to

E.κ2010|Y/+ .u+4/ E.μ|Y/ .18/

and to modify the conditional posterior mean of μ from

κ2014 −κ1981

33
to

κ2010 −κ1981

29
, .19/
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Fig. 16. Posterior means of κ1981,. . . ,κ2014 ( , pseudodata set 1; , pseudodata set 2; ,
pseudodata set 3), expected trajectories of κ2015, κ2016,. . . ( , , ) and the line that passes
through E.κ2014jY/ and has a slope of E.μjY/ ( , , ) obtained from three of the generated
pseudodata sets (with the proposed adjustments): , — —, , corresponding values implied by the
‘true’ parameters

while all the other components in the model are kept unchanged. As the data for 1981 and
2010 are obtained from nationwide censuses, expressions (18) and (19) are less influenced by
sampling uncertainty, and so is the expected trajectory of κ2015, κ2016, : : :. The benefit of the
adjustments proposed is demonstrated in Fig. 16, from which we observe that with the proposed
adjustments the resulting expected trajectories of κ2015, κ2016, : : : exhibit less variation across
the pseudodata sets and are all close to the expected trajectory that is implied by the ‘true’
parameters.

8. Conclusion

We have developed in this paper a Bayesian approach to model the evolution of Chinese mortality
over time, with all of the problems that are associated with the data set being accounted for.
Significant effort has been made to ensure that the end result satisfies the three important criteria
that were set out in Section 1.

The first criterion is that the model should exploit as much information as possible from
the data set. We have tailor made for the data set an estimation procedure, synthesizing Gibbs
sampling, an abridged multiple-imputation algorithm and a sequential Kalman filter. The esti-
mation procedure can handle the various types of discontinuities in the data set, so that all of
the available age-specific mortality data (from 1981 to 2014) can be incorporated in the model.
This feature makes our proposed approach stand out from those in the literature, which have
disregarded a significant portion of the available data.

The second criterion is that the model should provide appropriate provisions for uncertainty.
To our knowledge, our work represents the first attempt to obtain a joint posterior distribution
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of all of the model parameters (including κt for all t =1981, : : : , 2014) for the Chinese mortal-
ity data set. The joint posterior distribution offers us a comprehensive measure of parameter
uncertainty, including the additional uncertainty arising from the missing data. In addition, we
have introduced a flexible specification of var.εx,t/, allowing it to vary according to how the data
for year t are obtained. This flexible specification yields more reasonable prediction intervals
for the population’s underlying log(central death rates).

The third criterion is that the model should be parsimonious and yield biologically reasonable
projections. We have built our proposed model from (a Gaussian state space version of) the Lee–
Carter model, which is relatively parsimonious compared with other stochastic mortality models
that are applicable to the full age range of 0–99 years. Also, we have introduced a Bayesian version
of the cubic B-spline function of Renshaw and Haberman (2003) to smooth the pattern of the
estimates (posterior means) of the age response parameters. This feature prevents the mortality
forecasts from exhibiting any anti-intuitive behaviour that may arise from a jagged pattern of
the parameter estimates.

Unlike two-stage estimation approaches whereby the Box–Jenkins method (Box et al., 2015)
may be used to identify the optimal time series process for the estimates of κt from the first stage,
Bayesian (single-stage) estimation approaches require us to fix the time series process for {κt}
ahead of the estimation. We have specified a random walk with drift for {κt}, in part because
this simple process has been shown to work well for various populations (Tuljapurkar et al.,
2000) and in part because the short data series does not seem to support more sophisticated
processes. We suggest revisiting the process for {κt} when more years of data become available.
We also acknowledge that it may not be ideal to assume that var.εx,t/ is fixed along the age
dimension. However, allowing var.εx,t/ to be age specific would significantly increase the number
of parameters that must be estimated.

We do not consider cohort effects due to the limited availability of data. For the data set in
question, we can observe at most only about a third of a birth cohort, and the limited observation
is not even continuous because of the missing data. Any cohort-specific characteristic that
is identified from such a data set is likely to be spurious. When more years of data become
available, it is warranted to extend our modelling approach to incorporate cohort effects. To
accomplish such an extension, there is a need to reformulate a stochastic mortality model
that bears cohort effects (e.g. Renshaw and Haberman (2006) and Cairns et al. (2009)) into a
Gaussian state space form. The recent work of Fung et al. (2017) may be used as a starting
point.

The recent model of Hilton et al. (2019) merits some discussion. Ignoring its cohort term,
this model is quite similar to the Lee–Carter model that we consider in terms of structure
and number of parameters. Formulated as a generalized additive model, the model of Hilton
et al. (2019) is advantageous in being less challenging to estimate and incorporate parameter
smoothing. Although Hilton et al. (2019) developed the estimation procedure in a Bayesian
setting, they did not consider the possibility of having missing data. To utilize their model
for our application, an external imputation model for imputing missing death counts would
seem necessary. Furthermore, it is not clear how the model of Hilton et al. (2019) can take the
source of data (nationwide censuses, surveys of 1% of the population or surveys of 0.1% of the
population) into account. Without this feature, it would be difficult to interpret the prediction
intervals that are produced by the model when it is estimated from data from different sources. In
contrast, when using our model in which s2

t is devised to incorporate sampling uncertainty that
depends on the source of data, the user can easily produce, for example, prediction intervals for
the underlying mortality rates (i.e. mortality rates that are estimated from the entire population)
by setting s2

t to s2
c .
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We have validated our modelling and estimation approaches by using pseudodata sets gen-
erated from Poisson and Student t-distributions. The estimation results that are derived from
the pseudodata sets are not much different from that obtained by using the original data set,
suggesting that the normality assumption seems to be adequate in our application. Admittedly,
the normality assumption might be inadequate in other applications. If the departure from
the normality assumption is only moderate, then the following estimation procedure may be
executed:

(a) approximate the model with a linear Gaussian or mixture Gaussian alternative,
(b) use the sequential Kalman filter to draw samples of the state variables from the alternative

model and
(c) use the Metropolis–Hastings algorithm to accept or reject the samples drawn.

If the departure from the normality assumption is significant, then the particle Markov chain
Monte Carlo method may be used instead. This alternative estimation method is discussed in
the work of Andrieu et al. (2010) and has been applied in the context of mortality modelling by
Fung et al. (2017). One drawback of this alternative method is that it is very time consuming to
implement.

Another limitation of our modelling approach is that it does not consider the possibility
of structural changes. Although there are statistical tests for structural changes in historical
mortality (Coelho and Nunes, 2011; Li et al., 2011; Li and Li, 2017; Van Berkum et al., 2016),
none of them can be applied to data sets with discontinuities. Further, we have not considered
the possible ‘rotation’ of age patterns of mortality decline, which has attracted considerable
attention since it was first studied by Li et al. (2013). The investigation of these issues in the
context of Chinese mortality is left for future research. Finally, we note that the issue of data
quality is beyond the scope of this paper. Future research warrants an analysis of the quality of
the Chinese mortality data set, drawing on Cairns et al. (2016).
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