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Abstract

Coherent mortality forecasting methods try to capture the influence of global improve-
ment of health, communication, science on a specific population. The widely used coherent
model is an hierarchical, extended form of the Lee-Carter method which assumes an invariant
age component and a presumably linear time component to model the joint mortality data of
“relational populations”. Besides forecast inaccuracy due to estimation procedure, choosing
the appropriate reference population remains an arbitrary process. We propose to apply the
Lee-Carter method on smoothed mortality rates obtained by LASSO type regularization
and hence to partially adjust the time component according to observed lifespan disparity
to get the common factor of the relational populations. Time variability is also taken into
consideration during obtaining the common factor. The reference group for making coherent
forecast for a particular population is chosen from the set of available populations on the ba-
sis of closest lifespan disparity over time. The proposed methodology generates less forecast
errors during out-of-sample forecast period and more optimistic forecast of life expectancy
for most of the low-mortality countries. Moreover, choosing the relational populations on
the basis of historical pattern of lifespan disparity made the choice of reference populations
more systematic and competent.

Keywords: Lee-Carter method; Li-Lee method, Coherent mortality forecasting; Mortality
smoothing; Lifespan disparity; LASSO

1 Introduction

Accurate forecasts of mortality and life expectancy are a core requirement for decision making
in social, health-care and financial sectors. Fundamental changes of welfare policies of aging
societies highly depend on the accurate forecasting of longevity (Booth et al. 2002). Stochastic
modeling of mortality forecasting is rapidly gaining recognition in this context (Hyndman and
Booth 2008). Among several different approaches, the most prominent method to date is that
proposed by Lee and Carter (1992). This method decomposes the differences of log mortality
rates and their temporal average into two parts; an invariant age component and a time compo-
nent. Forecast is obtained by standard time series forecasting the time component. Thus, this
model is a simple but powerful probabilistic forecasting approach which does not suffer from
over-parametrization.

Owing to the straightforward interpretation of the model parameters, many low-mortality
countries use different variants of the LC model for mortality forecasting. Among several pro-
posed LC variants, multi-population forecasting is gaining attention as it seeks to ensure that
forecasts for related population maintain certain structural relationships based on past mortal-
ity patterns and theoretical understanding. The first approach to coherent mortality forecasting
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was introduced by Li and Lee (2005) as an extended hierarchical interface of the LC method.
Li and Lee (2005) modified the traditional LC method for forecasting mortality as the sum
of a common trend and population specific rates which converge towards the common trend
in the future. They referred to the product of the age and time component from the fitted
model on joint mortality of related populations as the “common factor”. Other approaches
to coherent forecasting have subsequently been developed. Hyndman et al. (2013) extended
the nonparametric multiple component approach of Hyndman and Ullah (2007) of which LC is
a special case, Ahmadi and Li (2014) used generalized linear modeling and Bergeron-Boucher
et al. (2017) used compositional data analysis of the distribution of deaths.

All these approaches are based on basic Lee and Carter (1992), so they also hold the limita-
tions of LC models (Hyndman et al. 2013). Beside that, all coherent forecasting methods share
the core problem of choosing an appropriate reference mortality for the population of interest.
This includes the choice of an appropriate reference group of populations for the population of
interest. The choice of reference depends on several consideration. First, the male-female gap in
mortality exists all over the life span for which biological issue remained an important issue for
choosing reference population in previous studies (Li and Lee 2005). Second, in the absence of
mortality crises due to epidemics or war, mortality forecast can be expected to change steadily in
keeping with related or regional populations. Similar economic and political frameworks among
a group of countries, such as European Union, may also be taken into account (Kjærgaard et al.
2016). Environmental, geographical location may also have significant impact (Ahcan et al.
2014). Third, consideration should be given to the number of populations combined to form
the reference population. Kjærgaard et al. (2016) found that a reference population made of
a small number of countries tends to perform better in terms of forecast accuracy than that
one comprising a larger group and choosing countries with closer life expectancy was found to
be a better strategy for choosing the reference population. These findings of Kjærgaard et al.
(2016) are important because choosing reference populations subjectively may introduce bias.
However, merely adopting a specific size for the reference group does not make selection easier.
Rather, if all countries are to be considered, it creates enormous computational complexities.
For a particular population if one looks for the other populations to construct the reference
group from another 39 populations, the best reference group of size 5 (including the particular
population) would need to be identified from 39C4= 82,251 possible combinations. Further,
although low-mortality convergence is taking place, each populations still has a distinct pattern
of mortality improvement. To illustrate, the estimated relative change (bx) in the log-mortality
rate at each age x from fitted Lee-Carter model for females of 20 low-mortality countries are
illustrated in Figure 1. Comparing with the mean trend of bx (marked with thick black line),
clearly, each of the populations showed different pattern of mortality improvement in different
parts of life span.

Combining populations from different mortality regimes may provide more optimistic fore-
casts of mortality but clearly it will be brought about by other populations with completely
different mortality pattern rather than by population of interest and thus the real situation of
the particular population will be dominated. To reduce computation complexities of combining
all possible groups of populations, consideration may be given to the development/specification
of robust prior assumptions about coherence among population. Further, the combination of
populations takes no account of period effects such as the effect of the policy interventions on
the reference population and hence the forecast. For instance, rapid and sharp increase may be
observed in life expectancies of Portugal after joining European Union (HMD 2018), which is
clearly results of adaptation and implementation of health policies of European Union.

In this paper, we propose to apply the Li and Lee (2005) methodology on smoothed mortality

2



Figure 1: Estimated relative change (bx) in the log-mortality rate at each
age x from fitted Lee-Carter model for females of 20 low-mortality countries
(1956:2011)
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Source: HMD (2018) and authors’ calculations.
Note: The bold black line is the mean trend of bx to show the distinct mortality improvement patterns.

rates obtained by LASSO type regularization and hence to partially adjust the time compo-
nent of the common factor to match the observed lifespan disparity (e†0). Smoothing by lasso
produces less error during fitting period compared to other spline based smoothing techniques
(Dokumentov et al. 2018). Also matching with e†0 – a more informative indicator of longevity
than e0, made the time component more reflective of countries’ mortality patterns (Rabbi and
Mazzuco 2018a). Hence the common factor of coherent model is estimated utilizing only a
subset of the available years (the best fitting period), and these same years are considered as
country-specific fitting period as well. Instead of arbitrary of subjective choice, we formulate
the reference group for a particular population by choosing populations having closest lifespan
disparity, e†0. Unlike life expectancy at birth, e†0 provides more information about “expansion
”or “shrinking”of mortality and can be utilized to measure mortality shift (Zhang and Vaupel

2009). Owing to its stability over time, Bohk-Ewald et al. (2017) employed e†0 to evaluate
forecast performances rather than just considering the fitted mortality rates or life expectancy.

2 Methods

Existing coherent forecasting technique: Li and Lee (2005) method

Li and Lee (2005) modified the standard Lee and Carter (1992) model to forecast mortality for
several countries by taking into account their membership in a group, rather than forecasting
individually. The two-factor LC model is,

lnmx,t = ax + bxkt + εx,t, (1)

where, mx,t is the central mortality rate at age x for year t; ax represents the average of
log-mortality at age x over time; bx is the set of age-specific constants explaining the relative
speed of change at each age x; kt represents the overall level of mortality in year t; and ex,t is
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the model residual. Singular Value Decomposition (SVD) is used on Zx,t = [ln(mx,t) − âx] to
obtain the OLS estimate of LC model. Symbolically,

SVD(Zx,t) = ULV ′ = L1Ux1Vt1 + . . . LnUxnVtn . (2)

For estimation of the age and time components, Lee and Carter (1992) considered the rank-1
approximation only as it explains most of the variance. Then the estimates of model parameters
are,

k̂t = L1Vt1 and, b̂x = Ux1 .

The original LC method incorporates a second stage estimate of kt by finding the value of
kt which, for a given population age distribution and previously estimated ax and bx produces
exactly the observed total number of deaths for the fitting period of the model (Lee and Carter
1992). Later variants of the LC method adopted different strategies to adjust the estimated kt
(Lee and Miller 2001; Booth et al. 2002). Most of the LC variants fit an ARIMA(0,1,0) to the
adjusted k̂t, from which forecast are derived:

k̂t = c+ k̂t−1 + ξt; (3)

where c is the drift term and ξt is the model residual. To extend the standard LC model to a
coherent setting, Li and Lee (2005) first estimated the average mortality trend for the reference
group (containing populations of interest and other “related”populations) and addressed it
as common factor. Hence they added the historical particularities of particular population
(unexplained by the common factor) in a hierarchical way to the standard LC model. Therefore,
in the short term, inter-country mortality differences in trends may be preserved, but ultimately
age-specific death rates within the group of countries are constrained to maintain a constant
ratio to one another (Li and Lee 2005). This extended model can be formulated as,

lnmx,t,i = ax,i +BxKt + bx,ikt,i + εx,t,i, (4)

where i denotes the specific country in the group, ax,i is country-specific average log mor-
tality rates. The term Bx is the relative speed of change in mortality at each age x and Kt

is the mortality index capturing the main time trend for the group. Li and Lee (2005) called
the term BxKt the common factor as this quantity is common for all countries of the group.
The error term of equation (4) is country-specific. To obtain the country-specific estimates of
the Li-Lee model, at first LC model is fitted to joint mortality data (combining all populations
in the group including the population of interest) from which the common factor is estimated
for use in equation (4). At this stage, Kt is adjusted for observed life expectancy of the joint
mortality data. A second SVD is performed on the matrix of differences of country-specific
mortality rates and ax,i and the common factor to estimate country-specific bx,i and kt,i with-
out any adjustment of kt,i. The forecast is obtained by applying standard time series models
to both of the time components. In the current study, a random walk with drift is used for
forecasting both for Kt and kt,i. Following Lee and Miller (2001) and Li and Lee (2005), we
also used the actual data as the jump-off rates to avoid jump–off error.

In the proposed methodology for coherent forecasting, we apply the Li and Lee (2005)
method on mortality rates smoothed by LASSO type regularization (Dokumentov et al. 2018)
and to adjust the fitted time component of the common factor according to observed lifespan
disparity, e†0 (Vaupel and Canudas-Romo 2003; Zhang and Vaupel 2009). Lasso smooths the
data in a similar manner to spline-based techniques for the mortality age pattern, but is more
accurate. Rabbi and Mazzuco (2018a) applied this methodology before for forecasting mortality
in case of single population. In addition, we employed a variable fitting period to address the
period effect on coherent forecasting.
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2.1 Choice of the reference group

Unlike different subjective approaches or geographic proximity for choosing reference group
(see Ahcan et al. 2014, for example), demographic perspectives like similar pattern of life ex-
pectancies seemed more realistic in terms of forecast accuracy (Kjærgaard et al. 2016). In our
proposed methodology, the reference group for a particular population is chosen on the basis of
closest lifespan disparity over time. There are several benefits for considering lifespan disparity
in the context of mortality forecasting. For aging societies where survival is highly concentrated
around older ages, the difference between the age at death and the expected remaining years
decreases. As a result, lifespan disparity gets smaller over time for aging societies, and it may
better capture premature mortality unlike life expectancy (Aburto and van Raalte 2018). Lifes-
pan disparity may provide further information about the shrinking or expansion of mortality
at different ages and it can be utilized as an alternative indicator of mortality shifting (Zhang
and Vaupel 2009). To measure lifespan disparity, we used average number of life years lost at
birth (Vaupel and Canudas-Romo 2003; Zhang and Vaupel 2009). Symbolically,

e†0 =

∫ ω

0
exdx dx

l0
≈

ω∑
0

exlxmx

l0
; (5)

where, ω is the maximum attainable age, dx is the distribution of death and lx is the
number of people alive at age x (l0 is the life table radix) and mx is the mortality rate at

age x. Thus estimation of e†0 is simple and straightforward. We base the choice of reference

group populations on the observed trend of e†0 with two assumptions: (i) a smaller number
of populations is preferred for the sake of parsimony and (ii) future convergence of mortality
among target populations as we did not distinguish male and female separately. For a particular
population we choose the populations giving the smallest difference in observed e†0. For a
particular population i, another population j will be in the reference group if∣∣∣ē†0i − ē†0j

∣∣∣ = min; (6)

compared to other available populations. To implement this, we estimate e†0 for all popula-
tions under consideration over the common fitting period and average over time to obtain the
population specific ē†0. For m years of available mortality rates and p populations the estimates
can be presented in the following matrix notation:

Y ear Pop1 Pop2 . . . Popp



t1 e†0(t1,1) e†0(t1,2) . . . e†0(t1,p)
t2 e†0(t2,1) e†0(t2,2) . . . e†0(t2,p)

...
...

...
...

...

tm−1 e†0(tm−1,1)
e†0(tm−1,2)

. . . e†0(tm−1,p)

tm e†0(tm,1) e†0(tm,2) . . . e†0(tm,p)

ē†0(.,1) ē†0(.,2) . . . ē†0(.,p).
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For a particular population i, we sorted all ē†0(t,j) in ascending order. Populations j for which

ē†0(t,j) is closest to ē†0(t,i) is selected into the reference group for population i. The pattern of

ranked, temporal ē†0(i,j) may show inconsistent pattern depending on the available populations.
For the low-mortality populations considered in this study, we obtained consistent patterns of
sorted ē†0(i,j) starting from the period of 1982 as the sorted ē†0(i,j) have almost same pattern

since then. Clearly, the number of populations and required gap between ē†0(t,i) and ē†0(t,j) may

vary among reference groups as not all populations have symmetric distance of ē†0 between each
other. Following the findings of Kjærgaard et al. (2016), we did not pre-fix the number of
populations in best reference group. Instead, we choose a best reference group consists of less
number of populations and providing least forecast accuracies during out-of-sample evaluation
period. We did not consider or compare different strategies for choosing reference population.
Nevertheless, based on the strong relation between e†0 and e0, similar results may be obtained
for a temporal average of life expectancies as well (Vaupel et al. 2011).

2.2 Coherent forecast of mortality rates

After identifying the populations to be used as the reference group, we smoothed the mortality
rates of each population using LASSO (Dokumentov et al. 2018). The rationale and advantages
for using LASSO are illustrated in earlier study (Rabbi and Mazzuco 2018a). In next step, we
combined respective populations in the reference group and followed the standard LC method-
ology to obtain the initial estimates of the age and time component. In this stage, we applied
same weight on all populations to overcome problem of combining larger exposure to smaller
exposure (also for Li and Lee (2005)),

mx,t =
1

p

p∑
i=1

mx,i,t. (7)

These mx,i,t are standardized mortality rates, thus it has almost null influence of population
size. In this stage, fitted two-factor LC model over joint mortality rates (reference group) will
be,

ln(m̂x,t) = âx + B̂xK̂t; (8)

which is known as common factor model (Li and Lee 2005). Following Lee and Miller (2001),
Li and Lee (2005) method made a second stage estimate of Kt by finding the value of Kt which
produces exactly the observed life expectancy for the fitting period of the model. Following
Rabbi and Mazzuco (2018a), we adjust the estimated Kt by solving the following equation:

e†0 observed =
ω∑
0

exp(âx + B̂x.Kt adj)exlx/l0. (9)

The ex and lx of equation (9) are obtained from life table estimated from the fitted common
factor model. After obtaining the adjusted K̂t, we identified the most appropriate period for
which this common factor should be considered. Most of the LC variants obtained linear trend
of kt for vast majority of the populations (Lee 2000). We considered this findings for the Kt

to obtain the best fitting period by choosing the fitting period which maximize the linearity
(Booth et al. 2002). It is also based on the idea that some more distant past history may not
be relevant for the future, which is more sensible coherent forecasting. In order to get the best
fitting period, we obtain the close approximation of deviance(t) which is equal to χ2(t) statistic
of the lack of fit in observed distribution of death Dx,t,

χ2(t) =
∑
x

[
Dx,t −D′x,t

]2
D′x,t

; (10)
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where D′x,t are fitted deaths which can be obtained from observed exposure Nx,t as follow:

D′x,t = Nx,t

[
exp(âx + B̂x.Kt adj)

]
. (11)

Following Booth et al. (2002), the total lack of fit to the log-linear model derives from two
sources: the base lack of fit from the log-additive model or LC model with K̂t adj and the

additional lack of fit from the imposition of the ARIMA(0,1,0) model on K̂t adj . The base lack
of fit for the period S years prior to last year of the fitting period is measured by

χ2
logadd(S) =

∑
t

χ2
logadd(t);

where the D′x,t are derived from K̂t adj . For the log-linear model,

χ2
loglin(S) =

∑
t

χ2
loglin(t);

here the D′x,t are derived from the linear fit of K̂t adj . This total lack of fit will be greater
than or equal to the base lack of fit. According to Booth et al. (2002), to compare χ2

loglin(S)

and χ2
logadd(S) they are divided by the corresponding degrees of freedom to produce mean-χ2

statistic. For n age categories and m years in the fitting period, the df for χ2
loglin(S) is n(m− 2)

and df for χ2
logadd(S) is (n − 1)(m − 1). The length of S is determined by the extent of the

additional lack of fit relative to the total lack of fit. The additional lack of fit will be small for
a good fit of the ARIMA(0,1,0) model. The first statistical measure of ratio of the total to base
lack of fit can be obtained as,

R(S) =
χ2
loglin(S)/[n(m− 2)]

χ2
logadd(S)/[(n− 1)(m− 2)]

. (12)

The marginal effect of including one more year in S can be obtained from the ratio of the
differences in total and base mean-χ2 statistics for S and S + 1,

RD(S) =

[
χ2
loglin(S) − χ2

loglin(S + 1)
]
/n[

χ2
logadd(S) − χ2

logadd(S + 1)
]
/(n− 1)

. (13)

Small values of R(S) and RD(S) indicate that the additional lack of fit is relatively small.
The best fitting period is identified by the value of S for which R(S) and RD(S) are sub-
stantially smaller than corresponding statistics for preceding values of S, indicating that the
inclusion of S − 1 years (and preceding) prior to last year of fitting period in the fitting period
results in a relatively large reduction in goodness of fit of the ARIMA model (Booth et al. 2002).

For country-specific coherent forecast, the basic LC model is then fitted to country-specific
mortality rates without the common factor. To obtain the country-specific ordinary least square
estimates of bx,i and kt,i, SVD is performed on

Zx,i,t = ln(mx,i,t) − âx,i − B̂xK̂t adj . (14)

The estimation procedure is as before. However, at this stage the LC model is fitted without
any adjustment for country-specific kt,i and it is fitted for the best fitting period obtained during
estimation of the common factor. A random walk with drift is then fitted to both K̂t adj and

k̂t,i. To eliminate jump-off error, we used the actual data as the jump-of rates for the forecast.
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2.3 Forecast accuracy

We consider the following two measures for checking the forecast accuracy of mortality rates:

mean absolute forecast error,

MAE =
1

(p+ 1)q

q∑
r=1

p∑
x=0

∣∣yx,r − ŷx,r|r−h
∣∣ ; (15)

mean squared forecast error,

MSE =
1

(p+ 1)q

q∑
r=1

p∑
x=0

(
yx,r − ŷx,r|r−h

)2
; (16)

and for life expectancy at birth, we consider the mean error,

ME =
1

q

q∑
r=1

(ê0,r − e0,r) . (17)

Here yx,r represents the observed mortality rate for age x in year r and ŷx,r represents
the forecast; e0,r represents the observed life expectancy at birth in year r and ê0,r represents
the forecast. From the available mortality data, we used the last 10 years as the period for
forecasting and the previous years as the fitting period. Using the data in the fitting period, we
made ten-step-ahead forecasts, and determined the forecast accuracy by comparing the forecasts
with the observed data in the hold-out period. Limitation of the forecasting period to ten years
was based on the use of data from 1956 in order to avoid the disruptions of epidemics and WWII.
We skipped the comparison of smoothing techniques in this paper as it is well documented by
Dokumentov et al. (2018) and Rabbi and Mazzuco (2018a). We kept our comparison with Li
and Lee (2005) only in this paper as that one is the most used coherent forecast technique till
now. Through out the paper we denoted the proposed method as LL

e†0
and Li and Lee (2005)

by LL.

3 Data

The data used in this study came from Human Mortality Database (HMD, 2018). The HMD is
one of the best sources in terms of data quality and it strives to provide mortality data for any
population for which death registration and census data are virtually complete. We analyzed
the mortality of 40 populations, namely the male and female populations of the following 20
low-mortality countries: Australia (AUS), Austria (AUT), Belgium (BEL), Canada (CAN),
Denmark (DNK), Finland (FIN), France (FRA), Germany (DEU), Ireland (IRL), Italy (ITA),
Japan (JPN), The Netherlands (NLD), New Zealand (NZL), Norway (NOR), Portugal (PRT),
Spain (ESP), Sweden (SWE), Switzerland (CHE), United Kingdom (UK) and USA (USA).
As data of Germany are not available before 1990, we combined the data for East and West
Germany together. Total populations, rather than smaller subpopulations, are considered for
France, New Zealand and the United Kingdom. For all of these countries, HMD covers the
period 1956 to 2011, which thus defines the data used in coherent setting (required common
fitting period for all populations). We did not consider high mortality populations from Central
and Eastern Europe to avoid the data quality issues, inconsistent mortality pattern over time
and a shorter fitting period (Rabbi and Mazzuco 2018b). The data are available for ages 0
to 110+, and we constructed life tables for those ages. Owing the presence of missing values
after age 100 for several years, missing values at ages older than 100 were estimated using the
Kannisto model (Thatcher et al. 1998). Details of Kannisto model are attached in the Appendix.
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4 Results

4.1 Best reference population

We calculated ē†0 and sorted from smallest to largest for all 40 populations for period starting
in 1956 to 2011. The ranking of populations remained stable for starting years since 1982.
Although future convergence of male and female mortality is assumed, the sorted ē†0 are ranked
naturally by sex with the lowest values being for females followed by males although some over-
lapping occurs in the middle of the range. Table 1 shows the sorted values of ē†0 for the period
1982 to 2011. We performed this step before smoothing but the ranking remained the same for
smoothed data.

Table 1: Sorted ē†0 over the period 1982:2011 for the 20 low-mortality countries

Population ESPF CHEF JPNF SWEF FINF ITAF AUTF NORF

ē†0 9.888 9.922 9.933 9.969 10.011 10.043 10.101 10.150
Population DEUF NLDF FRAF BELF AUSF IRLF PRTF UKF

ē†0 10.246 10.326 10.378 10.454 10.467 10.493 10.618 10.791
Population CANF SWEM NLDM NZLF DNKF JPNM NORM IRLM

ē†0 10.881 10.911 11.039 11.100 11.103 11.310 11.340 11.341
Population CHEM UKM ITAM AUSM DEUM BELM USAF DNKM

ē†0 11.464 11.495 11.547 11.648 11.717 11.800 11.802 11.831
Population CANM AUTM ESPM NZLM FINM FRAM PRTM USAM

ē†0 11.857 11.949 11.990 11.999 12.154 12.516 12.808 13.127

Source: HMD (2018) and authors’ calculations.
Note: Country codes are listed in section 3. M and F indicate males and females respectively.

For a particular population, the populations are closest in terms of ē†0 can be easily identified
from Table 1. To illustrate, the closest populations for female populations of France are given
in Table 2. It is seen that the closest 15 populations are female, underlying the significance
of the sex difference in mortality. The order of closest populations obtained in Table 2 is
important for coherent forecasting as we added closest population simultaneously in reference
group following this order. Kjærgaard et al. (2016) mentioned the importance of choosing the
reference population in coherent settings as it clearly effects the forecast accuracy and future
mortality.

We did not fix the number of populations in best reference group prior to model fitting.
To determine the best reference group, we analyzed the forecast accuracy both for Li and Lee
(2005) and the proposed method (LL

e†0
). As reference group, a combination of countries which

produces lowest forecast error during out-of-sample evaluation is chosen. Details of forecast
accuracies for proposed methods are discussed in the next section; here we discuss only the
findings for French Females for illustration of identification of the best reference group. We
added populations one at a time into the reference group with previous combination for both
LL

e†0
and LL and used same weight for both methods. The forecast accuracy for French Female

during hold-out period is plotted in Figure 2.

For all three measures of forecast accuracy there is a distinct fall (rise) in accuracy (error)
level after adding certain countries using LL

e†0
but LL did not produce this sharp threshold in the

case of ME(e0). All three measures of forecast accuracy indicated the same best reference group
for French females in the case of LL

e†0
. For LL, MAE and MSE indicate the same best reference

group, whereas different best reference group was indicated by ME(e0). Different combinations
of populations as best reference group from different measures of forecast accuracies are also
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Table 2: Reference population for French Females based on closest difference
in ē†0 during 1982:2011

Population FRAF NLDF BELF AUSF IRLF DEUF NORF PRTF∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ - 0.051 0.076 0.088 0.115 0.131 0.227 0.240

Population AUTF ITAF FINF SWEF UKF JPNF CHEF ESPF∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 0.276 0.334 0.367 0.408 0.412 0.444 0.455 0.489

Population CANF SWEM NLDM NZLF DNKF JPNM NORM IRLM∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 0.502 0.533 0.660 0.721 0.725 0.932 0.962 0.963

Population CHEM UKM ITAM AUSM DEUM BELM USAF DNKM∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 1.086 1.117 1.169 1.270 1.339 1.421 1.424 1.453

Population CANM AUTM ESPM NZLM FINM FRAM PRTM USAM∣∣∣ē†0,FRAF
− ē†0j

∣∣∣ 1.478 1.571 1.612 1.620 1.776 2.137 2.430 2.749

Source: HMD (2018) and authors’ calculations.
Note: Country codes are listed in section 3. M and F indicate males and females respectively.

Figure 2: Number of countries for achieving lowest MAE, MSE and ME(e0) for
French Females
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observed for many other populations. However, this threshold in level of forecast accuracy is
important, because it clearly shows which countries belongs to the best reference group. For
several other populations, we observed that ME(e0) diminishes after adding many populations
even though those populations are not so close to that of interest in terms of observed mortality
level. Adding these populations with huge gap in level of population-specific ē†0 does not have
high impact on MAE or MSE (Figure 2). The best reference populations obtained for French
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Females according to distance of ē†0 with other population is plotted in Figure 3.

Figure 3: Closest population to be included as reference for French Females
according to different measures of forecast accuracy
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Source: HMD (2018) and authors’ calculations.
Note: The horizontal black dotted line represents French Females. The Red dots are set available
populations while blue dots represent the ones forming the best reference group in terms of
highest forecast accuracy.

For French Females, the ME(e0) showed a sharp rise after adding Italian Females into the

reference group. The ē†0 for French Females was closer to populations added in reference group
prior to Italian Females (see Table 4 for details). The observed e0 of French and Italian Females
along with forecast of e0 from both LL and LL

e†0
are plotted in Figure 4. Both for LL and

LL
e†0

, the reference group consists of 10 populations which includes up to Austrian Females (see

Table 4 for details). The observed life expectancies for both of the populations were close to
each other until 2004. Irregular divergence is visible afterwards and French e0 is closer to the
LL forecast than to the LL

e†0
forecast. Further insight into the reference populations for French

females can be obtained from the trend in e†0 for some of the populations in the possible best
reference group (from Table 2), seen in Figure 5 .

For Italian Females, therecent trend of e†0 is close to other populations in the best reference
group for French Females, but the past trend was quite different. This explains the change in
forecast accuracy after adding many populations. For instance, Belgian Males are ranked as
29-th closest population to French Females in terms of lifespan disparity with a much higher
level of mortality (Table 2). Combining many such divergent populations in the reference group
finally increases accuracy because of using the same weight in the common factor model, but,
this attained without any similarities in mortality patterns. Although adding a large number
of countries increases the level of accuracy for life expectancy, it does not change MAE or MSE
substantially from the values obtained for a smaller number of populations in the reference
group.
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Figure 4: Observed and forecast of e0 for French Females (2002:2011)
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Source: HMD (2018) and authors’ calculations.
Note: Observed Italian Females e0 are also added for comparison.

Figure 5: Trend of e†0 for French Females and some other populations
(1956:2001)
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Source: HMD (2018) and authors’ calculations.
Note: The populations in blue lines are later found to be in best reference group for French
Females and red are for those populations which are not in best reference group for LL

e
†
0
.

4.2 Optimal size of best reference group

Unlike previous approaches we did not restrict the number of populations in the best reference
group; rather we choose to observe the threshold number of populations in reference group

12



for which the forecast accuracy is highest. From empirical analysis, we obtained different
results for LL and LL

e†0
. The best reference groups obtained from LL and LL

e†0
using different

measures of forecast accuracy for all 40 appear in the Appendix. The distribution of number of

countries in the best reference group according to
∣∣∣ē†0i − ē†0j

∣∣∣ is plotted in Figure 6, based on the

three measures of forecast accuracy together as different measures of forecast accuracy indicate
different populations as the best reference group.

Figure 6: Distribution of countries obtaining reference population according to∣∣∣ē†0i − ē†0j
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Source: HMD (2018) and authors’ calculations.
Note: We plotted a kernel density instead of histogram as it shows the skewness properly.

In the case of same accuracy level for two or more combinations, the combination having
smaller number of countries is chosen as best reference group for a parsimonious model. The

optimal number of populations in reference group and corresponding differences in
∣∣∣ē†0i − ē†0j

∣∣∣
considering all forecast errors are summarized in Table 3. The errors are considered separately
for males, females and both sexes together.

Table 3: Summary statistics for best reference group

Summary LLe†0
LL

statistics Male Female All Male Female All
Number Mean 5 5 5 5 5 5
of Median 5 5 5 4 4 4
populations IQR 6 4 5 4 4 4
Difference Mean 0.25 0.16 0.21 0.28 0.19 0.24
in Median 0.15 0.14 0.15 0.15 0.09 0.12∣∣∣ē†0i − ē†0j

∣∣∣ IQR 0.26 0.20 0.24 0.26 0.20 0.25

Source: HMD (2018) and authors’ calculations.
Note: IQR stands for interquartile range. We choose it over other measure of
dispersion as it gives more idea about spread of the distribution in this context.

13



4.3 Forecast accuracy

LL
e†0

returns lower MAE and MSE than LL for all populations except for US Females. The

forecast accuracy for French Females is given in Table 4.

Table 4: Comparison of forecast accuracy for French female during out of sample
evaluation period (2002-2011)

Reference MAE MSE ME(e0) Best fitting
population LL LL

e†0
LL LL

e†0
LL LL

e†0
period (LL

e†0
)

FRAF+NLDF 0.103 0.093 0.024 0.019 -0.282 -0.167 1956:2001
Above+BELF 0.105 0.094 0.025 0.020 -0.222 -0.161 1956:2001
Above+AUSF 0.105 0.094 0.025 0.018 -0.235 -0.137 1979:2001
Above+IRLF 0.103 0.098 0.024 0.020 -0.144 -0.129 1979:2001
Above+DEUF 0.102 0.093 0.024 0.018 -0.165 -0.123 1977:2001
Above+NORF 0.102 0.095 0.024 0.018 -0.138 -0.120 1979:2001
Above+PRTF 0.101 0.091 0.024 0.018 -0.127 -0.116 1974:2001
Above+AUTF 0.101 0.089 0.023 0.017 -0.124 -0.105 1974:2001
Above+ITAF 0.101 0.093 0.024 0.019 -0.123 -0.250 1964:2001
Above+FINF 0.101 0.092 0.024 0.019 -0.133 -0.261 1960:2001
Above+SWEF 0.102 0.093 0.024 0.019 -0.141 -0.264 1960:2001
Above+UKF 0.102 0.093 0.024 0.019 -0.139 -0.267 1960:2001
Above+JPNF 0.100 0.093 0.023 0.019 -0.138 -0.212 1957:2001
Above+CHEF 0.101 0.093 0.024 0.019 -0.144 -0.208 1957:2001
Above+ESPF 0.101 0.095 0.024 0.019 -0.138 -0.201 1957:2001
...

...
...

...
...

...
...

...

Source: HMD (2018) and authors’ calculations.
Note: Bold texts are used for showing the lowest errors obtained byLL

e
†
0
, while italic texts are used for

showing lowest error obtained by LL.

It has been already mentioned before that different measures of forecast accuracy often
leads to different best reference groups. The lowest errors were obtained for same combination
of populations in the case of LL

e†0
. For LL, lowest MAE and MSE was obtained from same

combination while lowest ME(e0) were obtained with a combination of fewer populations. One
important feature of proposed LL

e†0
is the concept of best fitting period. We did not find best

fitting period for all of the combinations (Table 4). The best reference group (bold texts in
Table 4) obtained for French Females consists of 9 populations and it has the best fitting period
for 1974 to 2001. The reason of better accuracy of LL

e†0
is already explained in Figure 4 and

5. The proposed modifications produce different common factor for LL
e†0

than that of LL. The

common factor obtained from LL
e†0

and LL for French Females are plotted in Figure 7. Here

we showed 3 different reference groups consisting 2, 4 and 6 populations respectively.

For small number of populations in reference group, the effect of adjusting Kt according
to e†0 is highly visible (Figure 7a). However, for group consisting large number of populations
clearly the best fitting period is responsible for higher forecast accuracy in the case of LL

e†0
(Figure 7b,c). However, with adding more populations to the reference group, this best fitting
period slowly shifts to full fitting period eventually. The reference group consisting of all 40
low-mortality populations considers full observational period (1956:2001) as best fitting period
in LL

e†0
. The comparison of different measures of forecast accuracy during hold-out period is
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Figure 7: Common factor of the fitted models with different sizes of reference
group
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Source: HMD (2018) and authors’ calculations.

given in Table 5.
Since LL

e†0
produces lower error than LL for all combinations, the population-specific lowest

forecast error for both LL
e†0

and LL are shown in Table 5. LL
e†0

and LL produced same level

of MAE and MSE for US Females. For ME(e0), LL performed better than that of LL
e†0

; LL

produced lower error for 11 populations. Unusual rise in ME(e0) is observed in the case of
LL

e†0
for several other countries, for all of them we noticed same pattern as observed for French

Females (Figure 5). Best fitting period corresponding to best reference groups from all these
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Table 5: Comparison of minimum values of different measures of forecast accu-
racy for female populations of 20 low-mortality countries during hold-out period
(2002-2011)

MAE MSE ME(e0)
Country LL LL

e†0
LL LL

e†0
LL LL

e†0
Australia 0.121 0.096 0.038 0.022 -0.011 -0.004
Austria 0.193 0.156 0.100 0.066 0.007 0.003
Belgium 0.153 0.135 0.070 0.053 0.002 -0.009
Canada 0.080 0.068 0.016 0.013 -0.042 -0.041
Denmark 0.231 0.200 0.129 0.102 -0.672 -0.542
Finland 0.223 0.199 0.125 0.080 -0.017 -0.072
France 0.100 0.089 0.023 0.017 -0.123 -0.106
Germany 0.087 0.082 0.017 0.014 0.049 0.082
Ireland 0.251 0.242 0.143 0.130 -0.998 -1.063
Italy 0.085 0.078 0.019 0.015 -0.005 -0.032
Japan 0.120 0.116 0.034 0.031 0.431 0.465
The Netherlands 0.149 0.138 0.068 0.056 -0.516 0.514
New Zealand 0.224 0.184 0.118 0.838 -0.298 -0.301
Norway 0.230 0.188 0.150 0.100 -0.036 -0.217
Portugal 0.174 0.140 0.074 0.047 -0.597 -0.281
Spain 0.100 0.096 0.023 0.021 0.008 0.011
Sweden 0.169 0.149 0.079 0.063 -0.037 -0.012
Switzerland 0.222 0.165 0.161 0.074 0.105 0.105
United Kingdom 0.079 0.069 0.014 0.010 -0.343 -0.331
USA 0.054 0.054 0.005 0.005 -0.156 -0.221

Source: HMD (2018) and authors’ calculations.
Note: Values in italic For LL

e
†
0

means the accuracy were higher than that of LL.

measures of forecast accuracies are shown in the appendix.

4.4 Forecast of life expectancy

The forecasts of female life expectancy at birth for all 20 low-mortality countries are plotted in
Figure 8. For both of the methods, we checked forecast accuracy during out-of-sample evalua-
tion and from three possible best reference groups we choose the one having lower number of
populations to make coherent forecast.

The coherent forecast of life expectancy at birth in 2050 for all of these populations are given
in Table 6. Except for Australia, Belgium, Denmark, Ireland, Norway, Spain and Switzerland,
the forecast of life expectancy were higher for LL

e†0
than that of LL.

To gain greater insight of the obtained results we further identified the populations for which
LL

e†0
was most and least optimistic than that of LL. For Portugal and Sweden the forecast ob-

tained from LL
e†0

have highest positive difference with that of LL whereas the highest negative

difference were observed for Belgium and Switzerland. The forecast of these four countries are
plotted in Figure 9.

Among these four countries, Portugal is mentioned before for remarkable improvement in
health status and rapid increase of life expectancy (Van Oyen et al. 2013). Between 2000
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Figure 8: Observed (1956:2011) and forecast (2012:2050) of female life ex-
pectancy at birth for 20 low-mortality countries
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Table 6: Comparison of coherent forecast of life expectancy at birth in 2050 for
female populations of 20 low-mortality countries

Country LL
e†0

LL Country LL
e†0

LL

Australia 89.382 89.719 Japan 92.777 92.636
Austria 89.382 89.216 The Netherlands 88.009 87.721
Belgium 88.184 88.538 New Zealand 87.432 87.159
Canada 88.166 88.166 Norway 87.636 87.662
Denmark 85.813 85.943 Portugal 90.537 88.692
Finland 89.668 89.665 Spain 90.278 90.567
France 90.824 90.730 Sweden 89.535 88.327
Germany 88.851 88.154 Switzerland 90.194 90.557
Ireland 87.649 87.934 United Kingdom 87.802 87.571
Italy 90.887 90.082 USA 85.237 85.235

Source: HMD (2018) and authors’ calculations.

and 2015 the female life expectancy increased by almost four years for Portugal, almost 5
years for males (HMD 2018). However, these improvements have not occurred at the same
pace for different income groups and disparities exist for other important dimensions of health.
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Figure 9: Observed (1956:2011) and forecast (2012:2050) of female life ex-
pectancy at birth for Portugal, Sweden, Denmark and Switzerland
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Source: HMD (2018) and authors’ calculations.
Note: For Italy and Sweden the difference of forecast of life expectancy were highest at 2050 while it was
lowest for Denmark and Switzerland.

Cardiovascular diseases and cancer are the largest contributors to mortality(Van Oyen et al.
2013). On the other hand, females of Sweden and Switzerland have steady pattern of mortality
improvement since long (HMD 2018). However, this scenario is is not the case for Danish
Females. During the past decades, the life expectancy of Danish women has lagged behind that
of women in neighboring Western European countries (Jacobsen et al. 2002). Among various
causes-of-deaths, ischaemic heart diseases followed by lung cancer are responsible for lower life
expectancy of Danish Females. Danish female mortality is mentioned before for having distinct
pattern of remarkable middle-aged mortality (Juel et al. 2000).

4.5 Interval forecast

To construct prediction interval of forecast of life expectancy at birth, we followed the procedure
employed by Hyndman and Booth (2008). In this procedure, the fitted mortality rates from
forecasting technique are simulated a large number of times to add disturbance to the time
component of the model. Life expectancies are then calculated for each set of the simulated
log-mortality rates. Prediction intervals are then constructed by 80% or 95% percentiles of the
simulated sets of the life expectancies. Following the results of forecast of life expectancy till
2050, the prediction interval of e0 is plotted in Figure 10 for Portugal, Sweden, Switzerland
and Belgian Females. For Sweden and Belgium, the prediction interval of the LL

e†0
is slightly

wider than that of LL, whereas prediction interval from LL are slightly wider for Portugal and
Switzerland. Interval forecast for other female populations are added in Appendix for interested
readers.
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Figure 10: Prediction interval of Portuguese, Swedish, Swiss and Belgian female
life expectancy at birth till 2050
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Note: The blue area represents 80% prediction interval and red lines are for 95% prediction interval.
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5 Discussion and Conclusion

In this line of research on Lee-Carter framework, we introduced a new methodology for coherent
forecasting. Choosing the appropriate reference group is an old puzzle for coherent forecasting
and different reference populations bring about quite different results. We addressed this prob-
lem by proposing a robust definition of reference population based on closest trend of lifespan
disparity. This definition is found to be applicable for existing coherent forecasting technique
as well. We incorporated lifespan disparity during parameter estimation of the coherent fore-
casting along with application of Lasso type smoothing prior to fitting the model to overcome
the problem of a jagged trend of age-component over the lifespan. Along with consideration
of best fitting period in proposed setup; the coherent forecast became more accurate during
out-of-sample evaluation and provides more optimistic forecast.

Despite of promising results, there are still many open questions that deserve further in-
vestigation. For starter, interval forecast of life expectancy at birth is narrow for several of
the populations for both methods. Although LL

e†0
produced slightly wider prediction interval

than LL in many cases, still, this is an old criticism regarding Lee-Carter variants (Hyndman
and Ullah 2007). In the proposed model it happened due to application of smoothing and new
adjustment technique which made the time component more linear. As a consequence it reduces
the variance of the ARIMA model. In addition, variance of the model is lower in the proposed
method, which also affects the interval forecast (Rabbi and Mazzuco 2018a).

In proposed definition of reference population, we considered both genders together. Al-
though several approaches considered males and females together for coherent forecasting, still,
consideration of males and females together in reference group is a topic of debate due to differ-
ent pattern of mortality over the lifespan. There are two responses regarding this issue. First,
during sorting out the closest populations, males and females were separated naturally from
the value of ē†0. Getting best reference population from opposite gender did not happen very
often except for few populations. Second, most of these countries consider same policy for both
genders regarding old health care system, as aging is common issue for both genders. Thus,
practical implementation is not a big problem.

In coherent forecasting, we applied equal weight on mortality rates of all populations to
construct joint mortality matrix (both for LL

e†0
and LL). This resolved the problem of mixing

population with large exposure with smaller one, however, using equal weight also has conse-
quences. Different mortality pattern of different populations are result of both exposure size and
different distribution of causes-of-deaths. Defining an appropriate population-specific weight to
adjust the problem of different distribution of causes-of-deaths will be complicated because dif-
ferent data sources will be needed to obtain harmonized data for causes-of-death. Although
the low-mortality countries are converging in terms of aging, still, each of these populations are
distinct in terms of distribution of deaths (Figure 1). Equal weight also reduces the benefit of
lasso in case of reference group consists of larger number of populations.

As most of the populations do not have data after age 100 for several years, we extrapo-
lated the mortality rates of age 100:110+ using Kannisto model. Although we obtained missing
mortality rates keeping the fitted rates at the closest distance to observed data, still it reduced
the variability in centenarian mortality (see Figure 1 for an example). Also, it is clear that
smoothing can create significant differences in mortality forecasting (Figure ??). For coherent
forecasting model, we separately smoothed the populations using Lasso and then combined
them in common factor model. Instead of smoothing prior to combine the mortality rates,
applying Lasso after combining populations may produce different results. However, smoothing
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after combining populations brings about a higher computational complexity because in this
way Lasso should be run every time a new population is added in reference group to check the
forecast accuracy. In addition to all of these issues, we did not present the forecast-accuracy
or forecast by bringing two classes of models together (single and coherent), though the new
coherent method found to be more accurate then Lee and Carter (1992) and Lee and Miller
(2001) for most of the populations. We are leaving this issue for personal subjective opinion
of getting the forecast independently for a particular population or from a coherent point of view.

Based on the results and limitations of the current research, we might point out some future
scope of research on mortality forecasting. The first issue will be to overcome to problem of
invariant bx in Lee-carter framework. One possible solution to do that is to adopt Bayesian
approaches on parameter estimation. Secondly, adaptation of cohort effect might get more
insight of the mortality scenario of a population. Thirdly, we introduced a new systematic
approach to obtain best reference group for a population. Although e†0 better reflects the
distribution of death for a population, further research on this field may produce better results
than proposed method. Fourthly, although Lasso is found to be more effective smoothing
technique for our data, it is a slightly time consuming method. Faster algorithm for getting
optimal results for Lasso will be helpful. Fifthly, for sake of coherent forecasting, it is wise
to consider life table of longer time series and longer life span. Future research on mortality
forecasting may consider to make a more generalized definition for length of lifespan to be
considered for coherent setup. Beside, current estimation technique for life expectancy at birth
is not free from age-specific bias. Revision of its definition may change the current limitation
of less accurate forecast of life expectancy.
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Appendix

A1. Old age mortality

Mortality rates are not available for some of the later age-groups for the whole fitting period.
Considering shifting mortality of almost all the populations, we fitted Kannisto’s model at later
age group for coherent forecasting. For ages x = 80, 81, . . . 110+, let the observed death counts
are noted as Dx and exposure as Ex. We extrapolate the unavailable mortality rates for later
age groups by fitting the Kannisto’s model of old age mortality on observed death rates Mx to
estimate the underlying hazards function µx as,

µx,(a,b) =
aeb(x−80)

1 + aeb(x−80)
; a, b ≥ 0.

Sensitivity of e†0 due to Kannisto fitted mortality rates
We tried different combinations of fitting period and then added different combination of
smoothed data with observed data. In this analysis we used the data obtained from fitting
period at age 80:100 and adding the smoothed data of age 100:100+ with observed data till age
99. Among various combination we tried, this combination was the closest to real data and the
difference of estimated and observed e†0 during the fitting period (1956-2011) were lowest for
this combination.
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A2. Interval forecast of life expectancy

Figure 11: Prediction interval of female life expectancy at birth till 2050 for
Australia, Austria, Canada and Denmark
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Source: HMD (2018) and authors’ calculations.
Note: The blue area represents 80% prediction interval and red lines are for 95% prediction interval.
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Figure 12: Prediction interval of female life expectancy at birth till 2050 for
Finland, France, Germany and Ireland
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Source: HMD (2018) and authors’ calculations.
Note: The blue area represents 80% prediction interval and red lines are for 95% prediction interval.
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Figure 13: Prediction interval of female life expectancy at birth till 2050 for
Italy, Japan, the Netherlands and New Zealand
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Source: HMD (2018) and authors’ calculations.
Note: The blue area represents 80% prediction interval and red lines are for 95% prediction interval.
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Figure 14: Prediction interval of female life expectancy at birth till 2050 for
Norway, Spain, United Kingdom and USA
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Source: HMD (2018) and authors’ calculations.
Note: The blue area represents 80% prediction interval and red lines are for 95% prediction interval.
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A3. Best reference group for coherent forecasting

The best reference groups obtained from three different measures of forecast accuracy during
out-of-sample evaluations are given in this section for LL and LL

e†0
. The combinations without

mentioning best fitting period utilized the full available date in case of LL
e†0

. German male

forecast accuracies were increasing indefinitely, so it is omitted for LL. For LL
e†0

, only the

combinations with different best fitting period rather than full observed time are mentioned.

Table 7: Best reference group for males of low-mortality countries according to
lowest MAE in LL

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM 0.06
Austria ESPM 0.04
Belgium USAF,DNKM,CANM,DEUM,AUTM,AUSM 0.15
Canada 10 populations 0.30
Denmark CANM 0.025
Finland NZLM,ESPM,AUTM 0.204
France PRTM,FINM,NZLM,ESPM,AUTM 0.56
Germany - -
Ireland NORM 0.00048
Italy UKM,CHEM,AUSM 0.1
Japan NORM 0.03
Netherlands NZLM,DNKF,SWEM 0.12
New Zealand ESPM,AUTM 0.049
Norway IRLM 0.0004
Portugal FRAM,USAM,FINM,NZLM,ESPM,AUTM 0.858
Spain NZLM,AUTM,CANM 0.13
Sweden CAN M 0.03
Switzerland UKM, ITAM, IRLM,NORM, JPNM,AUSM 0.184
UK CHEM, ITAM,AUSM, IRLM,NORM, JPNM,DEUM,BELM 0.335
USA PRTM 0.31

Source: HMD (2018) and authors’ calculations.

Table 8: Best reference group for males of low-mortality countries according to
lowest MSE in LL

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM 0.06
Austria ESPM 0.04
Belgium USAF,DNKM,CANM,DEUM,AUTM,AUSM 0.15
Canada DNKM,USAF,BELM,AUTM,ESPM,DEUM,NZLF,AUSM,FINM 0.29
Denmark CANM 0.029
Finland NZLM,ESPM,AUTM,CANM 0.29
France PRTM,FINM,NZLM,ESPM,AUTM 0.56
Germany - -
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM,DEUM, IRLM 0.20
Japan NORM, IRLM,CHEM,UKM,DNKM 0.206
Netherlands NZLM,DNKF, SWEM,CANF 0.15
New Zealand ESPM,AUTM,CANM,FINM,DNKM,USAF,BELM 0.199
Norway IRLM 0.0004
Portugal FRAM,USAM,FINM,NZLM,ESPM,AUTM,CANM 0.95
Spain 13 populations 0.52
Sweden CANM 0.03
Switzerland UKM, ITAM, IRLM,NORM, JPNM,AUSM,DEUM 0.25
UK CHEM, ITAM,AUSM, IRLM,NORM, JPNM,DEUM 0.304
USA PRTM 0.31

Source: HMD (2018) and authors’ calculations.
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Table 9: Best reference group for males of low-mortality countries according to
lowest ME(e0) in LL

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM, ITAM 0.10
Austria ESPM 0.04
Belgium USAF,DNKM,CANM,DEUM,AUTM,AUSM,ESPM 0.19
Canada 10 populations 0.30
Denmark CANM,USAF 0.029
Finland NZLM,ESPM,AUTM 0.204
France PRTM,FINM,NZLM,ESPM,AUTM 0.56
Germany - -
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM 0.1
Japan NORM 0.03
Netherlands NZLM,DNKF, SWEM 0.12
New Zealand ESPM 0.008
Norway IRLM 0.004
Portugal FRAM 0.29
Spain NZLM,AUTM 0.04
Sweden CANM,UKM,NLDM 0.127
Switzerland UKM, ITAM, IRLM,NORM, JPNM,AUSM 0.184
UK CHEM 0.03
USA PRTM,FRAM 0.61

Source: HMD (2018) and authors’ calculations.

Table 10: Best reference group for females of low-mortality countries according
to lowest MAE in LL

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF 0.088
Austria 13 populations 0.39
Belgium AUSF, IRLF,NLDF 0.12
Canada SWEM,UKF,NLDF 0.15
Denmark NZLF,NLDM 0.06
Finland ITAF,SWEF, JPNF,CHEF,AUTF,ESPF,NORF,DEUF,NLDF,FRAF 0.36
France 13 populations 0.44
Germany - -
Ireland AUSF,BELF 0.03
Italy FINF,AUTF,SWEF,NORF, JPNF,CHEF,ESPF 0.15
Japan CHEF, SWEF 0.01
Netherlands FRAF 0.05
New Zealand DNKF,NLDM, , SWEM 0.06
Norway AUTF 0.048
Portugal IRLF,AUSF 0.151
Spain CHEF, JPNF, SWEF 0.08
Sweden JPNF,FINF,CHEF 0.046
Switzerland JPNF,ESPF,SWEF,FINF, ITAF,AUTF,NORF,DEUF,NLDF 0.403
UK CANF, SWEM,PRTF,NLDM, IRLF 0.297
USA BELM 0.002

Source: HMD (2018) and authors’ calculations.
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Table 11: Best reference group for females of low-mortality countries according
to lowest MSE in LL

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF 0.088
Austria 13 populations 0.39
Belgium AUSF, IRLF,NLDF 0.12
Canada SWEM,UKF,NLDF,NZLF,DNKF 0.22
Denmark NZLF,NLDM 0.06
Finland 13 populations 0.44
France 13 populations 0.44
Germany 11 populations 0.31
Ireland AUSF,BELF 0.03
Italy FINF,AUTF, SWEF,NORF, JPNF 0.11
Japan CHEF, SWEF 0.01
Netherlands FRAF 0.05
New Zealand DNKF 0.003
Norway AUTF,DEUF 0.09
Portugal IRLF,AUSF 0.151
Spain CHEF, JPNF, SWEF 0.08
Sweden JPNF,FINF,CHEF, ITAF 0.07
Switzerland JPNF,ESPF,SWEF,FINF 0.088
UK CANF, SWEM,PRTF,NLDM 0.248
USA BELM 0.002

Source: HMD (2018) and authors’ calculations.

Table 12: Best reference group for females of low-mortality countries according
to lowest ME(e0) in LL

Country Other populations in best reference group
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF,NLDF,PRTF,DEUF 0.22
Austria NORF, ITAF,FINF,SWEF,DEUF, JPNF,CHEF 0.17
Belgium AUSF, IRLF,NLDF,PRTF 0.16
Canada SWEM 0.03
Denmark NZLF,NLDM 0.06
Finland ITAF, SWEF, JPNF,CHEF 0.04
France NLDF,BELF,AUSF, IRLF,DEUF,NORF,PRTF,AUTF, ITAF 0.33
Germany NLDF 0.079
Ireland AUSF 0.02
Italy FINF 0.03
Japan CHEF, SWEF 0.01
Netherlands FRAF 0.05
New Zealand DNKF, ,NLDF, SWEM, JPNM,CANF,NORM, IRLM 0.241
Norway AUTF 0.048
Portugal IRLF,AUSF,BELF,UKF,FRAF 0.24
Spain CHEF, JPNF, SWEF,FINF, ITAF,AUTF,NORF,DEUF,NLDF 0.43
Sweden JPNF,FINF 0.041
Switzerland JPNF,ESPF, SWEF,FINF, ITAF,AUTF,NORF,DEUF,NLDF 0.403
UK CANF, SWEM 0.12
USA BELM,DNKM,CANF,DEUM 0.084

Source: HMD (2018) and authors’ calculations.

30



Table 13: Best reference group for males of low-mortality countries according
to lowest MAE in LL

e†0

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM 0.06
Austria ESPM 0.04
Belgium 9 populations 0.199
Canada 10 populations 0.30
Denmark CANM,USAF,BELM 0.03
Finland NZLM,ESPM,AUTM 0.204
France PRTM 0.29
Germany 12 populations 0.376
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM 0.1
Japan NORM 0.03
Netherlands NZLM,DNKF, SWEM,CANF (1974:) 0.15
New Zealand ESPM 0.008
Norway IRLM 0.0004
Portugal 9 populations (1965:) 1.00
Spain NZLM,AUTM,CANM,CANM 0.13
Sweden CANM 0.03
Switzerland UKM, ITAM 0.08
UK 10 populations 0.33
USA PRTM,FRAM,FINM,NZLM,ESPM,AUTM (1965:) 1.17

Source: HMD (2018) and authors’ calculations.
Note: For combinations without mentioned best fitting period have best fit for (1956:2001).

Table 14: Best reference group for males of low-mortality countries according
to lowest MSE in LL

e†0

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM 0.06
Austria ESPM 0.04
Belgium USAF,DNKM,CANM,DEUM,AUTM,AUSM,ESPM 0.19
Canada DNKM,USAF,BELM,AUTM,ESPM,DEUM,NZLF,AUSM,FINM 0.29
Denmark CANM,USAF,BELM,DEUM 0.11
Finland NZLM,ESPM,AUTM,CANM 0.29
France PRTM 0.29
Germany 13 populations 0.377
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM,DEUM 0.16
Japan NORM 0.03
Netherlands NZLM,DNKF, SWEM,CANF (1974:) 0.15
New Zealand ESPM 0.008
Norway IRLM, JPNM,CHEM,UKM 0.15
Portugal 9 populations (1965:) 1.00
Spain 13 populations 0.52
Sweden CANM 0.03
Switzerland UKM, ITAM 0.08
UK 10 populations 0.33
USA PRTM,FRAM,FINM,NZLM,ESPM,AUTM,DEUM (1965:) 1.40

Source: HMD (2018) and authors’ calculations.
Note: For combinations without mentioned best fitting period have best fit for (1956:2001).
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Table 15: Best reference group for males of low-mortality countries according
to lowest ME(e0) in LL

e†0

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia DEUM, ITAM 0.10
Austria ESPM 0.04
Belgium 9 populations 0.25
Canada 10 populations 0.30
Denmark CANM,USAF,BELM 0.03
Finland NZLM,ESPM,AUTM,DNKM,USAF (1964:) 0.35
France PRTM 0.29
Germany 12 populations 0.376
Ireland NORM, JPNM,CHEM,UKM 0.15
Italy UKM,CHEM,AUSM 0.1
Japan NORM 0.03
Netherlands NZLM,DNKF, SWEM,CANF (1974:) 0.15
New Zealand ESPM 0.008
Norway IRLM 0.004
Portugal FRAM,USAM,FINM,NZLM (1965:) 1.00
Spain NZLM,AUTM 0.04
Sweden CANM 0.03
Switzerland UKM, ITAM 0.08
UK 10 populations 0.33
USA PRTM,FRAM,FINM,NZLM (1965:) 1.12

Source: HMD (2018) and authors’ calculations.
Note: For combinations without mentioned best fitting period have best fit for (1956:2001).

Table 16: Best reference group for females of low-mortality countries according
to lowest MAE in LL

e†0

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF 0.088
Austria NORF, ITAF,FINF, SWEF,DEUF, JPNF,CHEF,ESPF,NLDF (1957:) 0.22
Belgium AUSF, IRLF,NLDF,PRTF,DEUF,NORF (1974:) 0.30
Canada SWEM,UKF,NLDF,NZLF 0.21
Denmark NZLF,NLDM,SWEM, 0.19
Finland ITAF, SWEF, JPNF,CHEF 0.08
France NLDF, BELF,AUSF, IRLF,DEUF,NORF,PRTF,AUTF (1974:) 0.33
Germany NLDF,NORF,FRAF,AUTF, ITAF 0.20
Ireland AUSF,BELF 0.03
Italy FINF,AUTF, SWEF,NORF, JPNF,CHEF,ESPF,DEUF (1957:) 0.20
Japan CHEF,SWEF,ESPF,FINF 0.07
Netherlands FRAF,DEUF,BELF,AUSF (1977:) 0.14
New Zealand DNKF,NLDM, SWEM, JPNM,CANF,NORM (1976:) 0.24
Norway AUTF 0.048
Portugal IRLF,AUSF,BELF,UKF,FRAF (1966:) 0.24
Spain CHEF, JPNF,SWEF,FINF, ITAF,AUTF,NORF (1957:) 0.26
Sweden JPNF,FINF,CHEF 0.04
Switzerland 13 populations (1958:) 0.57
UK CANF (1972:) 0.08
USA BELM 0.002

Source: HMD (2018) and authors’ calculations.
Note: For combinations without mentioned best fitting period have best fit for (1956:2001).
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Table 17: Best reference group for females of low-mortality countries according
to lowest MSE in LL

e†0

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF 0.012
Austria NORF, ITAF,FINF, SWEF 0.13
Belgium AUSF, IRLF,NLDF,PRTF,DEUF,NORF (1974:) 0.30
Canada SWEM,UKF,NLDF,NZLF 0.21
Denmark NZLF,NLDM, SWEM, 0.19
Finland ITF,SWEF, JPNF,CHEF 0.08
France NLDF, NELF,AUSF, IRLF,DEUF,NORF,PRTF,AUTF (1974:) 0.33
Germany NLDF,NORF,FRAF,AUTF, ITAF,BELF,AUSF (1977:) 0.22
Ireland AUSF,BELF 0.03
Italy FINF,AUTF, SWEF,NORF, JPNF,CHEF,ESPF,DEUF,NLDF 0.28
Japan CHEF, SWEF,ESPF,FINF 0.07
Netherlands FRAF,DEUF,BELF,AUSF (1977:) 0.14
New Zealand DNKF,NLDM, , SWEM, JPNM,CANF,NORM (1976:) 0.24
Norway AUTF 0.04
Portugal IRLF,AUSF,BELF,UKF,FRAF (1966:) 0.24
Spain CHEF, JPNF,SWEF,FINF, ITAF,AUTF,NORF (1957:) 0.26
Sweden JPNF,FINF,CHEF 0.04
Switzerland 10 populations (1957:) 0.45
UK CANF (1972:) 0.08
USA BELM 0.002

Source: HMD (2018) and authors’ calculations.
Note: For combinations without mentioned best fitting period have best fit for (1956:2001).

Table 18: Best reference group for females of low-mortality countries according
to lowest ME(e0) in LL

e†0

Country Other populations in best reference group (best fitting period from:)
∣∣∣ē†0i − ē†0j

∣∣∣
Australia BELF, IRLF,FRAF 0.088
Austria NORF 0.04
Belgium AUSF 0.012
Canada SWEM,UKF,NLDF,NZLF,DNKF 0.22
Denmark NZLF,NLDM,SWEM, 0.19
Finland ITAF, SWEF, JPNF,CHEF 0.08
France NLDF,BELF,AUSF, IRLF,DEUF,NORF,PRTF,AUTF 0.33
Germany NLDF,NORF,FRAF,AUTF, ITAF 0.20
Ireland AUSF,BELF,FRAF 0.11
Italy FINF 0.03
Japan CHEF, SWEF,ESPF,FINF 0.07
Netherlands FRAF 0.05
New Zealand DNKF 0.003
Norway AUTF 0.04
Portugal IRLF,AUSF,BELF,UKF,FRAF,CANF,NLDF, SWEM,DEUF (1966:) 0.37
Spain CHEF, JPNF,SWEF,FINF, ITAF,AUTF,NORF (1957:) 0.26
Sweden JPNF,FINF,CHEF 0.04
Switzerland 13 populations 0.57
UK CANF (1972:) 0.08
USA BELM 0.002

Source: HMD (2018) and authors’ calculations.
Note: For combinations without mentioned best fitting period have best fit for (1956:2001).
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