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Abstract
BACKGROUND
Age-specific migration intensities often display irregularities that need to be removed by
graduation but two current methods for doing so, parametric model migration schedules
and non-parametric kernel regression, have their limitations.

OBJECTIVE
This paper introduces P-TOPALS, a relational method for smoothing migration data that
combines both parametric and non-parametric approaches.

DATA AND METHODS
I adapt de Beer’s TOPALS framework to migration data and combine it with penalised
splines to give a method that frees the user from choosing the optimal number and position
of knots and which can be solved using linear techniques. I compare it to smoothing by
model migration schedules and kernel regression using Australian census data.

RESULTS
I find that P-TOPALS combines the strengths of both student model migration schedules
and kernel regression to allow a good estimation of the high-curvature portion of the curve
at young adult ages as well as a sensitive modelling of intensities beyond the labour force
peak.

CONCLUSION
P-TOPALS is a useful framework for incorporating non-parametric elements to improve a
model migration schedule fit. It is flexible enough to capture the variety of profiles seen
for both aggregate and regional migration flows and is naturally suited to small populations
where observed probabilities can be highly irregular from one age to the next.

CONTRIBUTION
I demonstrate a new method for migration graduation that brings together the strengths of
both parametric and non-parametric approaches to give a good general-purpose smoother.
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1 Introduction
Researchers working on migration and population projections have long been interested in
generating smooth curves of age-specific migration intensities using graduation. The desire
of policy makers, health and education administrators, utility providers, and town planners
for population projections at ever finer spatial scales has meant that practitioners must es-
timate in- and out-migration rates for increasingly small populations, using smoothing to
generate stable age-specific probabilities from highly irregular observations (Wilson 2010).
Smoothing is also an important tool for extrapolating rates to advanced ages or more gen-
erally for generating a complete curve from sparse data (Rogers, Little, and Raymer 2010).
In the case of graduation with parametric functions it can be used to reduce the effective
dimension of a migration curve as a precursor to calibrating a projection model (Girosi and
King 2008). For comparative research demographers require smooth schedules to locate
key features such as the age at which migration intensity reaches its maximum value (Bell
et al. 2002; Rees et al. 2002).

Age-specific migration intensity follows a persistent pattern related to major life course
events (Bernard, Bell, and Charles-Edwards 2014): intensities are high in the first years of
life, decreasing steadily with age in a manner that reflects the mobility of a child’s parents.
At early adult ages they increase rapidly in response to movements related to work oppor-
tunities, reaching a peak in the twenties thereafter declining as careers and families are es-
tablished with an occasional secondary peak at retirement ages. This profile was first given
a mathematical form by Rogers, Raquillet, and Castro (1978) who assigned exponential
functions to childhood, labour force and retirement peaks and a constant curve to account
for migration independent of age, calling the result a Model Migration Schedule (MMS).
A fourth exponential component was added by Rogers and Castro (1981) and Rogers and
Watkins (1987) to capture the occasional sustained increase in migration intensity with age
after retirement associated with movements to access aged-care and a fifth component was
added by Wilson (2010) to account for the highly age-concentrated migration of young
adults entering tertiary education.

Since their introduction model migration schedules have been applied to internal and
international migration flows in developed as well as less-developed countries with results
confirming both the regular features of the age profile of migration and the usefulness of
model migration schedules for fitting them (See Raymer and Rogers (2008) and references
therein). It is well known that fitting an MMS is not an automatic process. Users need to
choose which components to include, set good initial values for each parameter and devise
strategies for ensuring they converge to a sensible solution. Bernard and Bell (2015) com-
pared model schedules with two non-parametric smoothing methods using five-year tran-
sition data and found that when correctly specified and fitted model schedules performed
better but otherwise kernel regression and cubic splines were more reliable. In particular,
kernel regression had low variance for small populations and low bias for large populations.
Even if an MMS is correctly specified and fitted it does constrain the shape of the compo-
nents. This can be a strength when trying to infer schedules from incomplete or noisy
observations but becomes a drawback when the objective is to investigate deviations from
the paradigm. Congdon (2008) has investigated Bayesian approaches to migration gradua-
tion and concluded that non-parametric models could detect features in the migration data
that MMS could not.



A good general-purpose smoothing method for migration probabilities must serve more
than one master. It needs to be accurate when there is little noise and realistic when there
is a lot. It needs to work well for all ages for which there is data and when there is no
data extrapolate in a manner that is easy to control. It must work equally well for single-
year and multi-year data and allow a like-for-like comparison between the two. We shall
see that neither MMS nor kernel regression alone are satisfactory in this respect. MMS
is good at fitting the highly age-concentrated features seen in one-year curves but lacks a
sensitive treatment of probabilities beyond the labour force peak. Kernel regression works
well when the distribution is well approximated by a polynomial, as it usually is for five-
year probabilities, but not over regions of high-curvature such as is often seen in one-year
probabilities, or when observed probabilities are unstable across ages as they often are for
small populations or advanced ages.

The aim of this paper is to propose a new method for migration graduation that brings
together the strengths of both parametric and non-parametric approaches to give a good
general-purpose smoother. My approach is to combine de Beer (2011)’s relational Tool
For Population Analysis using Linear Splines (TOPALS) with Eilers and Marx (1996)’s
penalised B-splines (P-splines) to estimate a complete curve of migration probabilities and
to show how the resultant nonlinear smoothing equations can be solved using only linear
techniques.

In the next section I summarise the smoothing problem including a review of census-
style migration data. In Section 3 I introduce the P-TOPALS method and demonstrate its
solution by iterated linear regressions. In Section 4 I consider the problem of graduating
aggregate interstate out-migration as an example of a case where sample noise is small,
comparing P-TOPALS with kernel regression and MMS and showing how it can be used
to correct a parametric fit and incorporate non-polynomial elements into the age profile. In
Section 5 I illustrate how it can be used to smooth state-level in- and out-migration, with
emphasis on its performance under conditions of increasing levels of noise and flexibility
in fitting a range of profile shapes.

2 Smoothing Migration Probabilities
Internal migration data collected by national census consists of observations

nM =


nM0

...
nMω

 and N =


N0
...
Nω

 (1)

of nMx movers of age x + n out of an initial population Nx of age x. Countries typically
collect data for fixed intervals of one (n = 1) or five (n = 5) years (Bell et al. 2014).
Migration probabilities conditional on survival in the country (hereafter just probability)
are calculated by taking the ratio

nm̃ =
nM

N
, (2)

where here and in the following all matrix operations and functions act elementwise unless
stated otherwise. The problem we consider here is where nm̃ is reported in single-year age



groups and our objective is to find a vector

nm =


nm0

...
nmω

 (3)

that in some sense fits nm̃ and is smooth. Conceptually we regard the vector nm̃ as consist-
ing of persistent components nm which we seek to extract and transient features we want
to remove. Within a model of migration as a random event occurring to a population ex-
posed to the risk of moving the transient features have their origin in sampling noise, which
becomes relatively less important as the population increases, and which shows itself as
uncorrelated fitting errors from one age to the next.

3 P-TOPALS
de Beer (2011, 2012) first introduced TOPALS as a tool for fitting and projecting fertility
and mortality schedules. The approach is motivated by the observation that relational and
spline methods are in a sense complementary and that by expressing age-specific rates as
a product of a standard and a spline one creates a framework greater than the sum of its
parts: Spline weights are stabilised leading to more realistic projections and the relationship
between target and standard is allowed to be more flexible leading to better fits.

At the national level, where observed rates show the least amount of noise, de Beer
(2011, 2012) showed how the spline weights could be solved in a simple and straightfor-
ward way by imposing the condition that the fitted curve equal the observed curve at the
spline knots. For graduating death rates at the subnational level Gonzaga and Schmertmann
(2016) showed how to determine the spline weights taking into account potentially high
levels of irregularity by minimising a Poisson log likelihood function. One common crit-
icism of spline models is that their weights are difficult to interpret because they are not
directly related to the value of the fitted curve. Gonzaga and Schmertmann (2016) showed
how this could be overcome using linear B-splines (de Boor 2001) which have weights that
equal the level at the knot.

Choosing the optimal number and position of knots for a spline fit is not straightforward.
Typically a relatively fine grid is used in regions where the function changes rapidly and a
coarse grid is used where it changes slowly (de Beer 2011, 2012; Gonzaga and Schmert-
mann 2016). An alternative is the P-spline approach (Eilers and Marx 1996) where knots
form a fine grid and smoothing is controlled by adding a term to the log likelihood function
proportional to a measure of roughness. In this paper I combine TOPALS with P-splines to
give a method, P-TOPALS, where smoothing is controlled by a single number, the rough-
ness penalty parameter.

In order to apply P-TOPALS to smooth migration intensities we need a framework that
is independent of the interval n. This is achieved by expressing nm in terms of probabilities
at one-year intervals mk

nmx = 1−
∏

x≤k<x+n
(1−mk). (4)

For intervals greater than one year (n > 1) quantities mk are to be understood as implied
one-year probabilities differing from actual probabilities to the extent that there has been



either significant change in migration intensities over the n years preceding the census or
significant return/repeat migration and mortality over the same period (Rees 1977). In the
TOPALS approach we represent m relative to a standard migration curve m̂

logm = log m̂+B · θ (5)

where m̂ is an (ω + 1)× 1 vector, B is an (ω + 1)× l matrix of B-spline functions arrayed
columnwise, θ is an l× 1 vector of spline weights and A ·B denotes matrix multiplication.
The number of B-splinesm is determined by the number of knots (de Boor 2001). Standard
TOPALS uses linear splines but higher order polynomials can also be used.

Following Gonzaga and Schmertmann (2016) I determine spline weights θ by maximis-
ing the function

L(θ) = N ′ · y − λ

2
θ′ ·D′k ·Dk · θ (6)

where
y = nm̃ log nm− nm, (7)

andDk is the k-order (l−k)× l difference matrix. HereA′ is the transpose of matrixA.The
first term in Equation (6) is the log likelihood of observing nMx movers assuming Poisson
counts with mean nmxNx. The second term is a penalty that as λ becomes larger forces the
difference term B · θ to tend to a polynomial of degree k − 1.

Gonzaga and Schmertmann (2016) chose λ = 2 and k = 1 and used the second term
to stabilise mortality estimates for very small populations. To find a smooth mortality
profile they used a small number of knots (ages 0, 1, 10, 20, 40, 70, and 100) which makes
solving Equation (6) feasible using standard nonlinear optimisers. Following Eilers and
Marx (1996) I handle the question of the optimal position and number of spline knots by
assuming a relatively large number and using the penalty as a means of controlling the
smoothness of the fit.

With a large number of knots it is no longer feasible to solve Equation (6) using a mul-
tidimensional optimiser therefore an alternative solution method is needed. Maximisation
of L leads to a system of nonlinear equations for θ which can be solved by iterative linear
regressions. Given an approximation θ̄ the updated value θ is calculated by solving the
linear equation

Q(θ̄) · θ = b(θ̄) (8)

where

Q(θ) = G′(θ) ·W (θ) ·G(θ) + λD′k ·Dk (9)
b(θ) = G′(θ) · V · (nm̃− nm) +G′(θ) ·W (θ) ·G(θ) · θ (10)

and

W (θ) = diag(nmN), (11)
V = diag(N). (12)

The derivation of this iteration and the expression for G(θ) are given in Appendix A. I start
the iteration with the constant vector

θ = log

(
1

n

∑
x nm̃x∑
x m̂x

)
. (13)



3.1 Choosing the penalty
There are a number of criteria for choosing the penalty λ that gives the optimal smoothness
(Eilers and Marx 1996). One popular method is Schwarz (1978)’s Bayesian information
criterion (BIC): λ is found by minimising the function

BIC(λ) = −2N ′ · y + dim(θ, λ)× log(1 + ω) (14)

where the first term is the deviance of the fit and

dim(θ, λ) = tr(H) (15)

is the effective dimension of θ calculated using the trace of the hat matrix of the linearised
problem

H = (G′ ·W ·G+ λD′k ·Dk)
−1 ·G′ ·W ·G. (16)

and A−1 denotes the matrix inverse of A. Occasionally BIC can give a penalty that is too
large in which case a good alternative is Akaike (1974)’s information criterion (AIC): λ is
found by minimising the function

AIC(λ) = −2N ′ · y + 2 dim(θ, λ). (17)

Criteria such as Equations (14) and (17) seek to find the optimal trade-off between
a small deviance and a small dimension. If λ is zero the deviance will be its smallest
value but the effective dimension will equal its greatest value (the number of knots). As λ
increases the effective dimension decreases to its minimum value k but the deviance will
increase to its maximum value because there are fewer fitting parameters. As a function of
the population N we can say that, all else being equal, the optimal λ will tend to 0 as N
increases and will become large as N decreases.

3.2 The role of the P-spline
One of the strengths of model migration schedules is that properly calibrated they are guar-
anteed to give sensible age profiles. One of their weaknesses is their parametric nature
which imposes limits on their fidelity. The P-TOPALS framework can be used as a means
of improving a fit by including non-parametric elements. To illustrate this consider the spe-
cial case of one-year probabilities (n = 1). Let m̂ be an MMS fit to an observed migration
profile. The quality of the fit can be judged by examining the residuals

r = log m̃− log m̂ (18)

for structure. For example, when they used Standard MMS to fit Chilean inter-provincial
and inter-municipal migration probabilities Bernard and Bell (2015) found that residuals
had a persistent and strong age profile and positive auto-correlation. Our objective is then
to find an improved fit m such that the new errors

ε = log m̃− logm (19)

are uncorrelated. Substituting Equation (18) and Equation (19) into Equation (5) and rear-
ranging gives the relation

r = B · θ + ε, (20)



which shows that the role of the P-spline is to fit the residuals. Equation (6) tells us that
using P-TOPALS will never lead to a worse fit in the sense that the weights θ will only be
non-zero if m gives a greater log likelihood than m̂.

3.3 The role of the standard
Expressing m in the form Equation (5) is convenient for projecting rates because conver-
gence to a standard can be modelled by letting θ → 0 over time (de Beer 2011, 2012) but
it is also useful for reducing the number of knots necessary to fit a schedule. The reason is
that polynomial approximations struggle in regions close to either a vertical asymptote (the
first year of life for mortality) or a horizontal asymptote (near age fifteen or fifty for fertil-
ity). Expressing m in the form Equation (5) allows us to effectively remove these elements
from the problem by packing them into the standard m̂. This is also the reason why for
smoothing purposes the choice of the standard is not that important when the population
is reasonably large (provided it includes the non-polynomial parts of the schedule) as has
been observed by both de Beer (2011) and Gonzaga and Schmertmann (2016).

The role of the standard can be made more precise by considering the two limits of a
small and large penalty. When the optimal penalty is chosen using one of the information-
based criteria of Section 3.1 then these two cases correspond to the large N and small N
limits. When λ is small, the case used by both de Beer (2011, 2012) (λ = 0) and Gonzaga
and Schmertmann (2016) (λ = 2), the first term on the right-hand side of Equation (6)
dominates. In this case two standards m̂1 and m̂2 that differ precisely by a B-spline

log m̂1 = log m̂2 +B · φ12 (21)

will give identical fitted curves m with spline weights related by

θ1 = θ2 − φ12. (22)

In other words B-spline deformations applied to the standard will have no effect on the
fitted curve. A corollary to this result is that for smoothing in the presence of a small
penalty the role of the standard is to model those portions of the age distribution that are
not well represented by a B-spline, that is those parts which are not locally polynomial. We
will see that for one-year migration probabilities these are ages where the change in level is
effectively discontinuous and for multi-year probabilities these are ages where the change
in slope is discontinuous.

When λ is large the second term on the right-hand side of Equation (6) will dominate.
For the case k = 1 this leads to the solution

θ = ιθ0 (23)

where θ0 is a free parameter and ι is a vector of ones. Since B-splines form a partition of
unity, that is B · ι = 1, it follows that

m = m̂eθ0 (24)

which shows that in this case the role of the standard is to determine the entire profile of
migration probabilities up to a multiplicative constant. We will see that this property works
to stabilise fits to data from small populations.



4 Application to aggregate interstate migration
Aggregate interstate migration probability is a measure of national internal mobility ob-
tained by dividing the number of people who have moved interstate over a specified period
by the total population, movers and non-movers. Because it counts all movers, irrespective
of source or destination, it is often used for cross-national comparisons of internal migra-
tion (Bell et al. 2002). It is also an ideal test case for graduation methods because it samples
the entire population and is therefore most free of the confounding effect of noisy data.

Migration data by state and single year of age over one- and five-year intervals was
obtained from the Australian Bureau of Statistics 2016 Census of Population and Housing
and used to calculate raw aggregate interstate migration probabilities out to age ω = 90 .
The results are shown in Figure 1 together with curves obtained using kernel regression and
MMS. For the kernel regression fit I chose local linear polynomials and a Gaussian kernel
(Fan and Gijbels 1996). The kernel bandwidth was calculated using Ruppert, Sheather, and
Wand (1995)’s rule-of-thumb plug-in bandwidth selector. For the MMS fit I chose Wilson
(2010)’s sixteen parameter student model

mx = a1 exp(−α1x) (childhood)

+a2 exp
(
−α2(x− µ2)− e−λ2(x−µ2)

)
(labour force)

+a3 exp
(
−
(
(x−µ3)
σ3

)2)
(retirement)

+a4 exp (α4x) (elderly)

+a5 exp
(
−α5(x− µ5)− e−λ5(x−µ5)

)
(student)

+c (constant)

(25)

because Australian interstate migration over a one-year interval has a well defined student
migration peak. I set the elderly component to zero because the data does not exhibit a
post-retirement increase in migration intensity. An initial guess for the remaining fourteen
parameters was refined using the sequential method described in Wilson (2010) and then
a final polishing of the values was done by minimising the sum of squared errors using a
nonlinear optimiser.

The top panel of Figure 1 shows fits to one-year data. We see that MMS performs better
than kernel regression over the 15-25 age range. It captures the sudden jump from age 16
to 17 and the minor peak at age 18 whereas kernel regression gives a more gradual increase
from age 14 and a monotonic increase in level that peaks at age 24. Kernel regression is
a bad fit for these ages mainly because it assumes migration is well approximated locally
by a polynomial function of age when in fact the change in probability from 16 to 17 is
effectively discontinuous. A second reason is that the rule-of-thumb bandwidth selector
calculates a constant bandwidth that is applied to all ages. Automatic variable bandwidth
selectors have been proposed (Fan and Gijbels 1996) but implementations are not widely
available at this time.

What is perhaps not so clear is that after age 30 kernel regression provides a better fit
than MMS. This can be seen in Figure 2 which plots the cumulative sum of squared errors
from age 30. The relatively poor performance of MMS over this age range is probably due
to limitations imposed by a parametric profile. Thus we see that for one-year aggregate
migration neither method can be preferred over the entire age range. As discussed in Sec-
tion 3.2 P-TOPALS can be used to improve an MMS fit. In this case I take as the standard



Figure 1: Australian aggregate interstate migration probabilities 2016, two smoothing
methods.
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Figure 2: Australian aggregate interstate migration 2015-2016, cumulative sum of
squared smoothing errors from age 30.
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Figure 3: Australian aggregate interstate migration 2011-2016, cumulative sum of
squared smoothing errors.
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m̂ the Student MMS fit given in the top panel of Figure 1. For the P-TOPALS fit I used lin-
ear basis splines with knots spaced three years apart from ages 0 to 90 and a linear penalty
(k = 1) with the penalty determined by the BIC condition. The top panel in Figure 4 shows
the P-TOPALS fit. The fit to student peak has been preserved and as Figure 2 shows the fit
after age 30 is now as good as kernel regression.

The bottom panel of Figure 1 shows fits to five-year data. Five-year migration probabil-
ities are preferred for cross-national comparisons because they include the effects of return
and onwards migration (Courgeau 1973; Rees 1977) and are therefore a more accurate re-
flection of spatial changes over the medium term. Comparing one and five-year data we
see that the five-year age profile is more smooth. In particular the increase in migration
intensity leading to the labour force peak is more gradual than for one-year migration in-
tensities. As a result the kernel regression fit has improved over these ages. Indeed, a plot
of the cumulative sum of squared errors from age 0 given in Figure 3 shows that kernel
regression out-performs Student MMS across the entire age range.

For multi-year probabilities life course events are imprinted not only on the level of the
age profile but also on its slope. For example, raw five-year probabilities in Figure 1 display
a sudden change in slope at age 12 which suggests the existence of a student peak in the
implied one-year probabilities. This can be seen by expanding Equation (4) to terms first
order in mk and taking the difference to get

∆nmx = nmx+1 − nmx ≈ mx+n −mx, (26)



which shows that a sudden increase in the slope of the five-year probability at age 12 in-
dicates a jump in the implied one-year probability at age 17. Both kernel regression and
MMS are over-smoothing near age 12, which is clearly demonstrated in Figure 3 by the
sudden increase in the cumulative sum of squared errors both methods display at this age.
This is to be expected for kernel regression because of its local polynomial assumption. In
the case of MMS this is occurring because the choice of the square of absolute errors as a
fitting metric tends to favour fitting for ages where migration probability is highest whereas
the feature we are trying to fit occurs over a small number of points at a low level. There are
options for improving the MMS fit over the student years. Changing the error metric from
absolute to relative errors worked for the 2006 census data but not for 2011. Increasing
the weighting of this part of the objective function relative to other ages gave good results
although the fit after the labour peak became worse.

Section 3.3 showed how P-TOPALS can be used to add non-polynomial elements to a
fit. In this case I take as the standard m̂ the one-year P-TOPALS fit in the upper panel of
Figure 4 which has a jump in migration intensity at age seventeen. The bottom panel shows
the P-TOPALS fit to five-year data. We see that P-TOPALS is able to capture the sudden
change in slope and as a result Figure 3 shows there is a more gradual increase in the sum
of squared errors over ages ten to twenty and a better performance than both Student MMS
and kernel regression across the entire age range.

5 Application to individual states
State in- and out-migration probabilities are measures of sub-national mobility obtained by
dividing the number of people who have moved to and from a state by the population with-
out and within the state respectively. Because they count movers to and from a given region
they are an important input for subnational population projections. Methods for generating
smooth age profiles at the state level must be both flexible and robust because differences in
population, economy, climate, and infrastructure affect the occurrence, strength and timing
of migration events and lead to significant variations in migration profiles, both by region
and by direction.

Data from the 2016 Australian Census of Population and Housing was used to calculate
raw age-specific in-migration and out-migration schedules for each of Australia’s six states
and two mainland territories over a one-year interval. The observed profiles for Tasmania
are shown in Figure 5 together with smoothed curves obtained using kernel regression,
Student MMS and P-TOPALS. Also shown is the 95% confidence interval for observed
intensities based on the P-TOPALS fit. For reasons of space figures for the other seven
states and the Northern Territory are given in Appendix B. Since one state’s departure is
another’s arrival it follows that aggregate interstate migration is a weighted average of in-
migration or of out-migration, where the weights are the population without (in-migration)
or within (out-migration) a state as a fraction of the total. However, comparing the top panel
of Figure 1 with Figures 5 and B-1 to B-7 we see that there can be considerable deviation
this from average.

Appendix B summarises the strategies used to fit the observed probabilities with our
three methods. In general we see that Student MMS provides a good fit before the labour
force peak but not always after it (see out-migration in Figures 5 and B-3 and in-migration



Figure 4: Australian aggregate interstate migration probabilities 2016, smoothing
with P-TOPALS.
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Figure 5: Tasmania migration probabilities 2015-2016 by age, three smoothing meth-
ods.
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in Figures B-2 and B-4). Kernel regression gives a bad fit to the student peak whenever it is
present (see out-migration in Figures 5 and B-1 to B-7 and in-migration in Figures B-2, B-
3, B-5 and B-6) but in general provides good fits after it. P-TOPALS gives good fits across
all ages, showing remarkably similar age profiles to kernel regression after the labour force
peak despite the two methods being based on different algorithms (see out-migration in
Figures 5, B-3 and B-7 and in-migration in Figures B-2, B-4 and B-5).

There is an increase in the level of irregularity in observed migration rates as population
N decreases from the larger states (see Figures B-5 to B-7) to the middle (see Figures B-3
and B-4) and the smaller ones (see Figures 5, B-1 and B-2). The three graduation methods
respond to this in different ways. Student MMS is usually robust but occasionally finds it
difficult to distinguish between noise and the student peak (see in-migration in Figures 5, B-
1, B-3 and B-4). Kernel regression can have problems smoothing for advances ages where
the population at risk of migrating is small and observed intensities are highly irregular. A
symptom of this is the appearance of oscillations in the fitted age profile for ages over sixty
(see out-migration in Figures 5 and B-1 and in-migration in Figures 5, B-1 and B-4). We
see that P-TOPALS shows neither the problems of Student MMS in locating the student
peak nor problems of kernel regression in giving sensible profiles for advanced ages. The
superior performance of P-TOPALS is in part due to the stabilising effect of the standard
which, as discussed in Section 3.3, determines the profile of the student peak and, when N
is very small, the entire age profile. It is also due to the flexibility of the P-spline framework
which allows us to easily incorporate a Poisson model of sample noise so that differences
between fitted and observed probabilities are weighted less for ages where the population
is low than where it is high.

6 Discussion and conclusion
For countries such as Australia population structure and dynamics at the sub-national level
are mainly determined by internal migration and capturing the age-dependent nature of this
process through graduation is vital for a range of demographic analyses such as population
projection and comparative research. This paper proposes a new method that enables a
good estimation of the high-curvature portion of the curve at young adult ages as well
as a sensitive modelling of intensities beyond the labour force peak. Using examples of
Australian aggregate interstate migration and in- and out-migration for its eight states and
territories analysis has shown that P-TOPALS can provide a more accurate representation
of the migration profile than both Student MMS and kernel regression and a more robust
treatment of sample noise for small populations.

Bernard and Bell (2015) have done a thorough study of the comparative strengths of
model migration schedules, cubic splines, and kernel regression for smoothing purposes
and the results in this paper are consistent with their findings. They rightly emphasise
that the quality of an MMS fit can be very sensitive to the initial values of the parameters
which I have also found in some of my fits to state-level data. Their conclusion that kernel
regression and cubic spline are preferable for most countries was based on tests using five-
year migration probabilities. I have also found that kernel regression is superior to MMS
in this case, but for one-year probabilities it could not capture the highly age-concentrated
student migration peak.



The main strength of P-TOPALS for generating smooth curves is it allows users to com-
bine parametric and non-parametric approaches and can be viewed either as a framework
for correcting a parametric fit or as means of adding non-polynomial elements to a non-
parametric one. Another one of its strengths is its ability to account for the increase in
irregularity of observed intensities as population exposed to the risk of moving decreases
with age. Ease of use is always an important consideration and P-TOPALS does require
more from the user than kernel regression but not as much as Student MMS in the sense
that users do need to specify a standard curve and an exposure curve but are not faced with
the non-trivial problem of choosing good starting values for parameters and strategies for
guiding them to the best-fit solution.

This paper has focused on graduating transition-type data reported by single year of age.
There are a number of paths for further investigation. First, can P-TOPALS be generalised
to handle grouped probabilities for countries that report internal mobility using abridged
ages? Second, how does the framework need to be extended to handle destination-specific
out-migration probabilities of the sort needed for the calculation of multi-regional life ta-
bles? Third, when smoothing migration profiles for regions at the sub-state level what is a
good method for choosing the standard?
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A Maximising the penalised likelihood function
The maximum of the function Equation (6) satisfies the equation

∂L
∂θ

= 0. (27)

Taking the derivative gives the nonlinear system of equations

G′(θ) · V · (nm̃− nm)− λD′k ·Dk · θ = 0 (28)

where
G(θ) :=

1

nm

∂nm

∂θ
. (29)

Let Gx(θ) denote the (x + 1)th row vector of G(θ) and Bj the (j + 1)th row vector of B.
Taking the derivatives of Equation (4) and (5) gives

Gx(θ) =
1− nmx

nmx

 ∑
x≤j<x+n

mj

1−mj

Bj

 . (30)

To solve Equation (28) I use approximations

nm(θ̄) ≈ nm+ nmG · (θ̄ − θ) (31)
G(θ̄) ≈ G (32)

which when substituted into Equation (28) give the linear iteration Equation (8).

B Smoothed migration curves by state
This section summarises the methods I used to obtain the smoothed migration curves shown
in Figures 5 and B-1 to B-7. For the kernel regression fits I used linear polynomials and
a Gaussian kernel with a global bandwidth calculated using Ruppert, Sheather, and Wand
(1995)’s rule-of-thumb method.

For most of the Student MMS fits I followed the same procedure used in Section 4 for
aggregate interstate migration. For the Australian Capital Territory in-migration (Figure B-
2) I first fitted the model to in-migration aggregated over 2006, 2011, and 2016 censuses
and then used the parameters as a starting point for a fit of all parameters to the 2016 census
data. For Western Australia, South Australia, and Queensland out-migration (Figures B-3
to B-5) all parameters were fitted except the position of student peak which was held fixed
at µ5 = 17.5.



For the P-TOPALS fits I used three types of standards. Since aggregate migration is an
average of both in- and out-migration it was a natural choice as the standard for some cases
(see out-migration in Figures B-1, B-2, B-6 and B-7). For cases where the student peak of
the aggregate was either very large or very small compared to the state I used the Student
MMS fit as the standard if it was a reasonable fit to the student peak (see out-migration
in Figures 5 and B-3 to B-5 and in-migration in Figures B-5 to B-7). When neither the
aggregate curve nor the Student MMS curve gave good fits to the student peak I created a
standard curve using time-aggregated migration data from 2006, 2011, and 2016 censuses,
first fit with Student MMS and then corrected using P-TOPALS as in Section 4 (see in-
migration in Figures 5, B-1 and B-2).

BIC was usually a good choice for the penalty selection criterion. Sometimes it ap-
peared to over-smooth in which case I chose AIC (see out-migration in Figures 5, B-3
and B-4 and in-migration in Figures B-5 to B-7). Linear B-splines were usually adequate
but in some cases their piece-wise linear form lead to kinks at the spline knots and for these
I used quadratic splines (see out-migration in Figures 5, B-3 and B-4 and in-migration in
Figures B-5 to B-7).



Figure B-1: Northern Territory migration probabilities 2015-2016 by age, three
smoothing methods.
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95%
confidence interval.
Source: Based on Australian Bureau of Statistics data.



Figure B-2: The Australian Capital Territory migration probabilities 2015-2016 by
age, three smoothing methods.
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Figure B-3: South Australia migration probabilities 2015-2016 by age, three smooth-
ing methods.
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95%
confidence interval.
Source: Based on Australian Bureau of Statistics data.



Figure B-4: Western Australia migration probabilities 2015-2016 by age, three
smoothing methods.
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95%
confidence interval.
Source: Based on Australian Bureau of Statistics data.



Figure B-5: Queensland migration probabilities 2015-2016 by age, three smoothing
methods.
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Note: Age is in completed years at the beginning of the migration interval. Grey area, 95%
confidence interval.
Source: Based on Australian Bureau of Statistics data.



Figure B-6: Victoria migration probabilities 2015-2016 by age, three smoothing meth-
ods.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0 10 20 30 40 50 60 70 80 90

O
ut

-m
ig

ra
tio

n

Kernel regression
Student MMS
P-TOPALS

In
-m

ig
ra

tio
n

Age

Note: Age is in completed years at the beginning of the migration interval. Grey area, 95%
confidence interval.
Source: Based on Australian Bureau of Statistics data.



Figure B-7: New South Wales migration probabilities 2015-2016 by age, three smooth-
ing methods.
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Source: Based on Australian Bureau of Statistics data.


